Publication: Lineer denklem sistemlerinin sonlu fark metodu ve non-polynomial kübik Spline metodu yardımıyla nümerik çözümlerinin elde edilmesi
Program
Authors
Swaid, Marwan
Advisor
Date
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
Çalısmada lineer denklem sistemlerinin nümerik çözümü ele alnımıştır. Bu lineer denklemlerin nümerik olarak çözümünde Kübik spline ve Sonlu fark metodları uygulanımıstır.Öncelikle kullanılan bazı temel kavramlar detaylı bir ̧şekilde açıklanmıstır. Tez de yer alan lineer denklem sistemi hakkında bilgi verilmiştir. Daha sonra lineer denklem sis-temine uygulanan non-polynomial kübik spline metot ve sonlu fark metotları açıklanmıstır. Daha önce lineer denklem sistemine uygulaması yapılan B-spline metodu datanıtılmıstır. Tezin bir sonraki bölümünde lineer denklem sisteminin iki farklı örnegiele alınmıs ve nümerik sonuçları ifade edilmistir.
In this thesis, numerical solutions of linear differential equation are considered. FDM and Cubic spline methods are applied for the equations above.\\ Some basic concepts used are explained in detail. Information was given about the linear equation system in the thesis. Then, the non-polynomial cubic spline method and finite difference methods applied to the linear equation system are explained. B-spline method, which has been applied to the linear equation system before, has also been introduced. In the next part of the thesis, two different examples of the linear equation system are discussed and their numerical results are expressed.
In this thesis, numerical solutions of linear differential equation are considered. FDM and Cubic spline methods are applied for the equations above.\\ Some basic concepts used are explained in detail. Information was given about the linear equation system in the thesis. Then, the non-polynomial cubic spline method and finite difference methods applied to the linear equation system are explained. B-spline method, which has been applied to the linear equation system before, has also been introduced. In the next part of the thesis, two different examples of the linear equation system are discussed and their numerical results are expressed.