Publication: Ters Dönmüş Bir Sarkacın Doğrusal Olmayan Konum Denetiminden En Büyük Lyapunov Üstelinin Poincare Kesitinden Elde Edilmesi
Date
2006-12
Authors
Gürses, S.
Akkaş, N.
Platin, B.E.
Journal Title
Journal ISSN
Volume Title
Publisher
İstanbul Kültür Üniversitesi Yayınları
Abstract
Bu çalismada, iki mertebeli bir sistemden alinan Poincare kesitleri kullanilarak bu sistemin en büyük
Lyapunov üstelinin (LLE) hesaplanabilecegi gösterilmistir. Modelolarak dogrusalolmayan konum
denetimi yapilan ters dönmüs bir sarkaç kullanilmistir. Sistemin dogrusalolmayan davranisi, denetim
torkunun üretiminde geri besleme bilgisi olarak kullanilan açisal konumdaki ölü bölgeden
kaynaklanmaktadir. Yay sabiti, sönümlenme katsayisi, konumdaki ölü bölge esik degeri gibi sistem
parametreleri degistirilerek, sistemin dinamik davranisinin kaotik olmasi saglanmistir. Söz konusu
sarkaç dinamigi MA TLAB SIMULINK® ortaminda modellenmistir. Model denklemleri, durum
degiskenleri olarak seçilen açisal konum ve açisa] hiz için sayisal integrasyon teknigi ile çözülmüstür.
Bu çözümler sistemin davranisini faz uzayinda temsil etmek için kullanilmistir. Çözümler elde
edilirken, sistem yörüngelerine verilen bir rahatsizligin zaman içindeki degisimi ve gelisimi izlenmis,
bu veriler kullanilarak sistemin LLEsi bulunmustur.. Kaotik davranan sarkacm. LLEsi Poincare
kesitleri kullanilarak da hesaplanmis ve ayni sistemin hareket denklemleri kullanilarak hesaplanan
LLEsi ile karsilastinlrtustir.
Computing the largest Lyapunov exponent (LLE) of a 2-D planar flow through its Poincare section is shown to be possible in this study. An inverted pendulum with nonlinear position control is used as a mathematical modeL. The nonlinearity imposed on the model is caused by a dead-zone assigned to the position sensor. The dynamical system is forced to behave chaotically by tuning the system parameters; such as, the stiffness, damping, or the width of the dead-zone of the sensor.MA TLAB SIMULINK® is used as the media to build the mathematical model of the system. The goveming equations of the system are solved by using numerical integration techniques for angular position and angular velocity, which are used as the state variables in constructing the dynamical behavior of the system in the phase plane. A parallel processing algorithm working with numerical integration ofthe system' s governing equations is developed in ord er to follow the fate of a perturbation given to the states at a time. LLE of the dynamical system is generated by using this algorithm and compared with the LLE estimate computed through the Poincare section of the dynamical system.
Computing the largest Lyapunov exponent (LLE) of a 2-D planar flow through its Poincare section is shown to be possible in this study. An inverted pendulum with nonlinear position control is used as a mathematical modeL. The nonlinearity imposed on the model is caused by a dead-zone assigned to the position sensor. The dynamical system is forced to behave chaotically by tuning the system parameters; such as, the stiffness, damping, or the width of the dead-zone of the sensor.MA TLAB SIMULINK® is used as the media to build the mathematical model of the system. The goveming equations of the system are solved by using numerical integration techniques for angular position and angular velocity, which are used as the state variables in constructing the dynamical behavior of the system in the phase plane. A parallel processing algorithm working with numerical integration ofthe system' s governing equations is developed in ord er to follow the fate of a perturbation given to the states at a time. LLE of the dynamical system is generated by using this algorithm and compared with the LLE estimate computed through the Poincare section of the dynamical system.
Description
Keywords
kaotik sistemler, model denklemler, lyapunov üsteli, poincare kesiti, chaotic systems, model equations, Lyapunov exponent, poincare section