Publication: Küçük komütatörlerden ortak invaryant altuzaylar
Date
2021
Authors
Gargaridi, İliyana
Journal Title
Journal ISSN
Volume Title
Publisher
İstanbul Kültür Üniversitesi / Lisansüstü Eğitim Enstitüsü / Matematik ve Bilgisayar Bilimleri Ana Bilim Dalı / Matematik Bilim Dalı
Abstract
A ve B, n × n'lik kompleks matris cebirleri öyle ki her A ∈ A ve B ∈ B için [A,B] = AB − BA komütatörü "küçük" olmak üzere A ve B cebirlerinin ortak aşikar olmayan invaryant altuzayı var mı? Bu soru "neredeyse-komütatif " cebirler ve daha genel olarak yarı-grupların yapısını çalışan bazı makalelerden motive edilmiştir. Basit bir örnekle sorunun cevabının hayır olduğunu görülebilir: B cebiri A cebirinin A′ komütantına eşit ise bu iki cebir bir invaryant altuzay paylaşmaz. Böylece bütüun cebirleri karakterize ederiz: A matris cebiri komütantı ile ortak invaryant altuzay sahip değilse bir tam matris cebirinin genişlemesine benzerdir. Böylece her A ∈ A ve B ∈ B için rank[A,B] ≤ 1 ve bunlar içinden bire ulaşan varsa A ve B cebirlerinin ortak invaryant altuzayı varlığını gösteririz. Ayrıca, [A,B]'nin nilpotent olmasının yanı sıra matris lineer uzayları hakkında bazı kısmi sonuç tartışılmıştır.
Supppose that A and B are two algebras of complex n × n matrices such that the ring commutator [A,B] = AB − BA is "small" for each A ∈ A and B ∈ B; does this imply that A and B have common non-trivial invariant subspace? This question is motivated by a series of papers studying the structure of "almost-commutative" algebras and, more generally, semigroups. A simple example shows that, in general, the answer is no: it may happen that the algebra B is equal to the commutator A′ of A and the two algebras do not share an invariant subspace. We characterize all such algebras: if a matrix algebra A does not share invariant subspaces with commutant, then it must be similar to an amplification of a full matrix algebra. Then, we show that if A and B are two algebras such that rank[A,B] ≤ 1 for all A ∈ A and B ∈ B and the rank-one is achieved, then A and B have a common invariant subspaces. A number of partial results about linear spaces of matrices, as well as the condition that [A,B] is always nilpotent, are also discussed.
Supppose that A and B are two algebras of complex n × n matrices such that the ring commutator [A,B] = AB − BA is "small" for each A ∈ A and B ∈ B; does this imply that A and B have common non-trivial invariant subspace? This question is motivated by a series of papers studying the structure of "almost-commutative" algebras and, more generally, semigroups. A simple example shows that, in general, the answer is no: it may happen that the algebra B is equal to the commutator A′ of A and the two algebras do not share an invariant subspace. We characterize all such algebras: if a matrix algebra A does not share invariant subspaces with commutant, then it must be similar to an amplification of a full matrix algebra. Then, we show that if A and B are two algebras such that rank[A,B] ≤ 1 for all A ∈ A and B ∈ B and the rank-one is achieved, then A and B have a common invariant subspaces. A number of partial results about linear spaces of matrices, as well as the condition that [A,B] is always nilpotent, are also discussed.
Description
Keywords
Matematik, Mathematics