Publication: Independent Domination Polynomial of Zero-Divisor Graphs of Commutative Rings
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
An independent dominating set of a graph is a vertex subset that is both dominating and independent set in the graph, i.e., a maximal independent set. Also, the independent domination polynomial is an ordinary generating function for the number of independent dominating sets in the graph. In this paper, we examine independent domination polynomials of zero-divisor graphs of the ring Z(n) where n is an element of {2p, p(2), p(alpha), pq, p(2)q, pqr) and their roots. Finally, we prove the log-concavity and unimodality of their independent domination polynomials.
Description
Keywords
Independent Domination Polynomial, Independent Dominating Set, Zero-divisor Graph, Independent Set, Domination Number, Maximal Independent Set
Citation
Kırcalı Gürsoy, N., Ülker, A. & Gürsoy, A. Independent domination polynomial of zero-divisor graphs of commutative rings. Soft Comput 26;(15), 6989–6997 (2022).