Publication:
Independent Domination Polynomial of Zero-Divisor Graphs of Commutative Rings

dc.contributor.authorGürsoy, Necla Kırcalı
dc.contributor.authorÜLKER, ALPER
dc.contributor.authorGürsoy, Arif
dc.date.accessioned2023-03-14T10:15:26Z
dc.date.available2023-03-14T10:15:26Z
dc.date.issued2022
dc.description.abstractAn independent dominating set of a graph is a vertex subset that is both dominating and independent set in the graph, i.e., a maximal independent set. Also, the independent domination polynomial is an ordinary generating function for the number of independent dominating sets in the graph. In this paper, we examine independent domination polynomials of zero-divisor graphs of the ring Z(n) where n is an element of {2p, p(2), p(alpha), pq, p(2)q, pqr) and their roots. Finally, we prove the log-concavity and unimodality of their independent domination polynomials.en
dc.identifier26
dc.identifier.citationKırcalı Gürsoy, N., Ülker, A. & Gürsoy, A. Independent domination polynomial of zero-divisor graphs of commutative rings. Soft Comput 26;(15), 6989–6997 (2022).
dc.identifier.issn1432-7643
dc.identifier.scopus2-s2.0-85132759411
dc.identifier.urihttps://doi.org/10.1007/s00500-022-07217-2
dc.identifier.urihttps://hdl.handle.net/11413/8369
dc.identifier.wos825801000004
dc.language.isoen
dc.publisherSpringer
dc.relation.journalSoft Computing
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectIndependent Domination Polynomial
dc.subjectIndependent Dominating Set
dc.subjectZero-divisor Graph
dc.subjectIndependent Set
dc.subjectDomination Number
dc.subjectMaximal Independent Set
dc.titleIndependent Domination Polynomial of Zero-Divisor Graphs of Commutative Ringsen
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus
local.journal.endpage6997
local.journal.issue15
local.journal.startpage6889
relation.isAuthorOfPublication835c6d17-bd5f-45e5-b622-9a12c3acc132
relation.isAuthorOfPublication.latestForDiscovery835c6d17-bd5f-45e5-b622-9a12c3acc132

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
Tam Metin/Full Text
Size:
1.21 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: