Publication: Harmonik yalınkat fonksiyonlar ve diferansiyel operatörler
Loading...
Date
2009-05
Authors
Genç, Nurcan
Journal Title
Journal ISSN
Volume Title
Publisher
İstanbul Kültür Üniversitesi / Fen Bilimleri Enstitüsü / Matematik Bilgisayar Anabilim Dalı
Abstract
Leibniz 1695'te L'Hospital'a sordugu ?Tam sayı dereceden türevler, kesirli dereceden türevlere genellestirilebilir mi?? sorusu kesirli diferansiyelin dogum tarihi olarak gösterilebilir. Leibniz'in yanı sıra Liouville, Riemann, Weyl, Fourier, Laplace, Lagrange, Euler gibi ünlü birçok matematikçi de bu konu üzerinde çalısmıslardır. Bu çalısmanın ilk üç bölümünde yalınkat fonksiyonlar teorisinin temelleri denilebilecek önbilgiler verilmis ve özel yalınkat fonksiyonlar sınıfının genel özellikleri incelenmistir. Dördüncü bölümünde ise, son zamanlarda H.M.Srivastava ve Shipegoshi Owa tarafından kompleks fonksiyonlar için gelistirilen kesirli türev ve uygulamalarını temel alarak bu çalısmanın açık birim disk D = {z z <1} 'de tanımlanmıs ve 1 1 1 ( ) np np n f z z a z ¥ + + = = + açılımına sahip fonksiyonlar için l - kesirli operatörler tanımlanıp, bu operatörler için yeni neticeler elde edilmistir. Anahtar Kelimeler : Subordinasyon, Yalınkat Fonksiyonlar, Distorsiyon, Kesirli Türev, Kesirli Operatörler, Katsayı Esitsizlikleri
The birth of fractional differential equations can be said to date back to 1695 when Leibniz asked L?Hospital the question, ?Can integer derivatives be generalized to fractional derivatives?? Apart from Leibniz, many famous mathematician like Lioville, Riemann, Weyl, Fourier, Laplace, Lagrange, Euler also studied on this matter.The first tree parts of this work consists of basic knowledge of univalent functions and investigation of properties of special classes of univalent functions. In Section Four of this study, basing on the fractional derivatives and their applications that were developed recently for complex functions by H. M. Srivastava and Shipegoshi, the open unit disk was defined as D = {z z <1} ; and after defining l - fractional operators for functions that have the expansion of 1 1 1 ( ) np np n f z z a z ¥ + + = = + , new results were obtained for those operators. Keywords : Subordination, Univalent Function, Distortion, Fractional Derivative, Fractional Operators, Coefficient Inequality
The birth of fractional differential equations can be said to date back to 1695 when Leibniz asked L?Hospital the question, ?Can integer derivatives be generalized to fractional derivatives?? Apart from Leibniz, many famous mathematician like Lioville, Riemann, Weyl, Fourier, Laplace, Lagrange, Euler also studied on this matter.The first tree parts of this work consists of basic knowledge of univalent functions and investigation of properties of special classes of univalent functions. In Section Four of this study, basing on the fractional derivatives and their applications that were developed recently for complex functions by H. M. Srivastava and Shipegoshi, the open unit disk was defined as D = {z z <1} ; and after defining l - fractional operators for functions that have the expansion of 1 1 1 ( ) np np n f z z a z ¥ + + = = + , new results were obtained for those operators. Keywords : Subordination, Univalent Function, Distortion, Fractional Derivative, Fractional Operators, Coefficient Inequality
Description
Keywords
matematik, mathematics, fonksiyonlar, functions