Publication: Some Geometric Properties of the Duals of Cesàro Sequence Spaces
| dc.contributor.author | GÖNÜLLÜ, UĞUR | |
| dc.date.accessioned | 2026-01-07T07:18:57Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The spaces d(s) are defined for 0 <= s <= infinity. We consider the fundamental geometric properties of the d(s) spaces, isomorphic duals of the Cesaro sequence spaces ces(r) with 1/s + 1/r =1. We prove that for 1 <= s < infinity, the Banach spaces d(s) are Radon-Riesz spaces that are not rotund or smooth. Moreover, we show that the Banach lattice d(1) has Schur's property, just as i1 does. Finally, a characterization of norm totally bounded subsets of d(1) is also given. | en |
| dc.identifier.citation | Gönüllü, U. (2025). Some geometric properties of the duals of Cesàro sequence spaces. Mathematica Slovaca, (0). | |
| dc.identifier.issn | 0139-9918 | |
| dc.identifier.uri | https://doi.org/10.1515/ms-2025-1004 | |
| dc.identifier.uri | https://hdl.handle.net/11413/9804 | |
| dc.identifier.wos | 001644821600001 | |
| dc.language.iso | en | |
| dc.publisher | Walter de Gruyter GmbH | |
| dc.relation.journal | Mathematica Slovaca | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Smoothness | |
| dc.subject | Schur's Property | |
| dc.title | Some Geometric Properties of the Duals of Cesàro Sequence Spaces | |
| dc.type | Article Early Access | |
| dspace.entity.type | Publication | |
| local.indexed.at | WOS | |
| relation.isAuthorOfPublication | 4856fd47-b674-418f-8eec-8b89d9f4ad37 | |
| relation.isAuthorOfPublication.latestForDiscovery | 4856fd47-b674-418f-8eec-8b89d9f4ad37 |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.81 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
