Publication:
Some Geometric Properties of the Duals of Cesàro Sequence Spaces

dc.contributor.authorGÖNÜLLÜ, UĞUR
dc.date.accessioned2026-01-07T07:18:57Z
dc.date.issued2025
dc.description.abstractThe spaces d(s) are defined for 0 <= s <= infinity. We consider the fundamental geometric properties of the d(s) spaces, isomorphic duals of the Cesaro sequence spaces ces(r) with 1/s + 1/r =1. We prove that for 1 <= s < infinity, the Banach spaces d(s) are Radon-Riesz spaces that are not rotund or smooth. Moreover, we show that the Banach lattice d(1) has Schur's property, just as i1 does. Finally, a characterization of norm totally bounded subsets of d(1) is also given.en
dc.identifier.citationGönüllü, U. (2025). Some geometric properties of the duals of Cesàro sequence spaces. Mathematica Slovaca, (0).
dc.identifier.issn0139-9918
dc.identifier.urihttps://doi.org/10.1515/ms-2025-1004
dc.identifier.urihttps://hdl.handle.net/11413/9804
dc.identifier.wos001644821600001
dc.language.isoen
dc.publisherWalter de Gruyter GmbH
dc.relation.journalMathematica Slovaca
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSmoothness
dc.subjectSchur's Property
dc.titleSome Geometric Properties of the Duals of Cesàro Sequence Spaces
dc.typeArticle Early Access
dspace.entity.typePublication
local.indexed.atWOS
relation.isAuthorOfPublication4856fd47-b674-418f-8eec-8b89d9f4ad37
relation.isAuthorOfPublication.latestForDiscovery4856fd47-b674-418f-8eec-8b89d9f4ad37

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: