Publication:
An Unsupervised Data Mining Approach for Clustering Customers of Abrasive Manufacturer

dc.contributor.authorAKBURAK, DİLEK
dc.contributor.authorID275470tr_TR
dc.date.accessioned2019-08-05T13:47:29Z
dc.date.available2019-08-05T13:47:29Z
dc.date.issued2019-07
dc.description.abstractCustomer segmentation is the process of dividing customers into groups based on common similar characteristics such as value, location, demography etc. Companies can communicate with each group effectively and appropriately by considering these common properties. Data mining algorithms are the most utilized techniques which lead direct marketers to develop their marketing strategies tailored to particular segments and/or individuals. Clustering is one of the unsupervised data mining methods used for grouping set of objects such a way that objects in the same group have maximum similarity while between group similarities are low. K-means clustering is a commonly used non-hierarchical clustering method for performing non-parametrical learning tasks. This study aims to identify customer types according to their profitability, value and risk in order to take appropriate action for each group via clustering. In this study, data items are grouped according to coded customer profile with respect to the consumers’ total expenditures. Customers are segmented as VIP, Platinum, Gold, and Bronze into 4 groups according to their values within 2 years.tr_TR
dc.identifier.scopus2-s2.0-85069431624
dc.identifier.urihttps://hdl.handle.net/11413/5037
dc.language.isoen
dc.relation.journal"Intelligent and Fuzzy Sytems (INFUS-2019)tr_TR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectCostomer Segmantationtr_TR
dc.subjectClusteringtr_TR
dc.subjectData Miningtr_TR
dc.subjectKümelenmetr_TR
dc.subjectVeri Madenciliğitr_TR
dc.titleAn Unsupervised Data Mining Approach for Clustering Customers of Abrasive Manufacturertr_TR
dc.typeconferenceObject
dspace.entity.typePublication
local.indexed.atScopus
relation.isAuthorOfPublication1edaf200-3863-4e70-b1bb-08a3800348ec
relation.isAuthorOfPublication.latestForDiscovery1edaf200-3863-4e70-b1bb-08a3800348ec

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: