Publication: Dynamics On Relaxed Newton's Method Derivative
dc.contributor.author | Özer, Mehmet | |
dc.contributor.author | Hacıbekiroglou, Gürsel | |
dc.contributor.author | Valaristos, Antonios | |
dc.contributor.author | Miliou, Amalia N. | |
dc.contributor.author | Anagnostopoulos, Antonios N. | |
dc.contributor.author | Cenys, Antanas | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | TR2509 | tr_TR |
dc.contributor.authorID | TR199370 | tr_TR |
dc.date.accessioned | 2014-08-14T08:03:39Z | |
dc.date.available | 2014-08-14T08:03:39Z | |
dc.date.issued | 2006-12 | |
dc.description.abstract | In the present report the dynamic behaviour of the one dimensional family of maps f(x) = b(x + ar}' is examined, for representative values of the control parametres a, b and A.. These maps are of special interest, since theyare solutions of N;j = 2 , where N;j is the Relaxed Newton's method derivative. The maps f(x) are proved to be solutions of the non-linear df(x) fJ[.r/..I](1+A)/A fJ 1 b-1/A differential equation, dx - '. J \Xi , where = /l. •. The reccurent form of these maps, Xn = b(xn_i + arA, after excessive iterations, shows in a Xn vs. A. plot, an initial exponential decay followed by a bifurcation. The value ofA. at which this bifurcation takes place, depends on the values of the parameters a, b. This corresponds to a switch to an oscillatory behaviour with amplitudes of f (X) undergoing a period doubling. For values of a slightly higher than i and at higher A.'s areverse bifurcation occurs and a bleb is formed. This behaviour is confirrned by calculating the corresponding Lyapunov exponent. | en |
dc.identifier.issn | 1303-2739 | |
dc.identifier.uri | http://hdl.handle.net/11413/430 | |
dc.language.iso | en_US | tr_TR |
dc.publisher | İstanbul Kültür Üniversitesi Yayınları | tr_TR |
dc.subject | Dynamics | tr_TR |
dc.subject | Newton's method | tr_TR |
dc.subject | Derivative | tr_TR |
dc.subject | Dinamikler | tr_TR |
dc.subject | Newton Yöntemi | tr_TR |
dc.subject | Türev | tr_TR |
dc.title | Dynamics On Relaxed Newton's Method Derivative | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 82125b62-3d7a-489a-8c3f-a104e98d346e |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Dynamics On Relaxed Newton's Method Derivative.pdf
- Size:
- 382.34 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: