Publication: Multi-Dimensional Weiss Operators
dc.contributor.author | Borisenok, Sergey | |
dc.contributor.author | Erkut, M. Hakan | |
dc.contributor.author | Demirer, Murat | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | TR199370 | tr_TR |
dc.contributor.authorID | TR141152 | tr_TR |
dc.date.accessioned | 2016-09-08T13:56:12Z | |
dc.date.available | 2016-09-08T13:56:12Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We present a solution of the Weiss operator family generalized for the case of R(d) and formulate a d-dimensional analogue of the Weiss Theorem. Most importantly, the generalization of the Weiss Theorem allows us to find a subset of null class functions for a partial differential equation with the generalized Weiss operators. We illustrate the significance of our approach through several examples of both linear and non-linear partial differential equations. | tr_TR |
dc.identifier.issn | 1300-0098 | |
dc.identifier.scopus | 2-s2.0-81555200737 | |
dc.identifier.uri | http://hdl.handle.net/11413/1469 | |
dc.identifier.wos | 298197500008 | |
dc.language.iso | en | |
dc.publisher | Scientific Technical Research Council Turkey-Tubitak, Ataturk Bulvari No 221, Kavaklidere, TR-06100 Ankara, Turkey | |
dc.relation | Turkish Journal Of Mathematics | tr_TR |
dc.subject | Partial Differential Equations | tr_TR |
dc.subject | Weiss Operators | tr_TR |
dc.subject | Painleve Property | tr_TR |
dc.subject | Kısmi Diferansiyel Denklemler | tr_TR |
dc.subject | Weiss Operatörler | tr_TR |
dc.subject | Painleve Özelliği | tr_TR |
dc.title | Multi-Dimensional Weiss Operators | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | WOS | |
local.indexed.at | Scopus | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 82125b62-3d7a-489a-8c3f-a104e98d346e |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: