Publication:
The determination of the evoked potential generating mechanism based on radial basis neural network model

dc.contributor.authorDEMİRER, RÜŞTÜ MURAT
dc.contributor.authorHALİL ÖZCAN GULCUR
dc.contributor.authorYUKİO KOSUGI
dc.date.accessioned2020-03-13T11:41:46Z
dc.date.available2020-03-13T11:41:46Z
dc.date.issued2000
dc.description.abstractThis paper investigates the modeling of nonlinearity on the generation of the single trial evoked potential signal (s-EP) by means of using a mixed radial basis function neural network (M-RBFN). The more emphasis is put on the contribution of spontaneous EEG term to s-EP signal. The method is based on a nonlinear M-RBFN neural network model that is trained simultaneously with the different segments of EEG/EP data. Then, the output of the trained model (estimator) is a both fitted and reduced (optimized) nonlinear model and then provide a global representation of the passage dynamics between spontaneous brain activity and poststimulus periods. The performance of the proposed neural network method is evaluated using a realistic simulation and applied to a real EEG/EP measurement.
dc.identifier.issn0916-8532
dc.identifier.urihttps://hdl.handle.net/11413/6310
dc.identifier.wos000089569200014
dc.identifier.wos89569200014en
dc.language.isoen_UStr_TR
dc.relation.journalIEICE TRANSACTIONS ON INFORMATION AND SYSTEMStr_TR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectVisual Evoked Potentials
dc.subjectRadial Basis Functions
dc.subjectNonlinear System Identification
dc.subjectAuto-regressive Moving Average
dc.subjectNeural Networks
dc.subjectNöral Ağlar
dc.subjectDoğrusal Olmayan Sistem Tanımlaması
dc.subjectOtomatik Regresif Hareketli Ortalama
dc.titleThe determination of the evoked potential generating mechanism based on radial basis neural network model
dc.typeArticle
dspace.entity.typePublication
local.indexed.atwos
local.journal.endpage1823tr_TR
local.journal.issue9tr_TR
local.journal.startpage1819
relation.isAuthorOfPublication230f2691-020b-4775-bfea-27b806aa0725
relation.isAuthorOfPublication.latestForDiscovery230f2691-020b-4775-bfea-27b806aa0725

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: