Publication:
The determination of the evoked potential generating mechanism based on radial basis neural network model

No Thumbnail Available

Date

2000

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

This paper investigates the modeling of nonlinearity on the generation of the single trial evoked potential signal (s-EP) by means of using a mixed radial basis function neural network (M-RBFN). The more emphasis is put on the contribution of spontaneous EEG term to s-EP signal. The method is based on a nonlinear M-RBFN neural network model that is trained simultaneously with the different segments of EEG/EP data. Then, the output of the trained model (estimator) is a both fitted and reduced (optimized) nonlinear model and then provide a global representation of the passage dynamics between spontaneous brain activity and poststimulus periods. The performance of the proposed neural network method is evaluated using a realistic simulation and applied to a real EEG/EP measurement.

Description

Keywords

Visual Evoked Potentials, Radial Basis Functions, Nonlinear System Identification, Auto-regressive Moving Average, Neural Networks, Nöral Ağlar, Doğrusal Olmayan Sistem Tanımlaması, Otomatik Regresif Hareketli Ortalama

Citation