Publication:
In Vitro Investigations of miR-33a Expression in Estrogen Receptor-Targeting Therapies in Breast Cancer Cells

Loading...
Thumbnail Image

Date

2021

Authors

KILBAŞ, PELİN ÖZFİLİZ
ARISAN, ELİF DAMLA
YERLİKAYA, PINAR OBAKAN

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Research Projects

Organizational Units

Journal Issue

Abstract

Simple Summary: Altered metabolic pathways determine the aggressivity of breast cancer cells. To highlight the potential markers gains importance to understand early molecular signatures of disease. microRNAs are the small non-coding RNAs found in different biological samples. Due to the dysregulation of metabolic pathways, the expression and secretion of microRNAs are modulated. (1) Background: Increased fatty acid synthesis leads to the aggressive phenotype of breast cancer and renders efficiency of therapeutics. Regulatory microRNAs (miRNAs) on lipid biosynthesis pathways as miR-33a have potential to clarify the exact mechanism. (2) Methods: We determined miR-33a expression levels following exposure of MCF-7 and MDA-MB-231 breast cancer cells to estrogen receptor (ER) activator (estradiol-17 beta, E2) or anti-estrogens (ICI 182,780, Fulvestrant, FUL) at non-cytotoxic concentrations. We related miR-33a expression levels in the cells to cellular lipid biosynthesis-related pathways through immunoblotting. (3) Results: miR-33a mimic treatment led to significantly downregulation of fatty acid synthase (FASN) in MCF-7 cells but not in MDA-MB-231 cells in the presence of estradiol-17 beta (E2) or Fulvestrant (FUL). In contrast to the miR-33a inhibitor effect, miR-33a mimic co-transfection with E2 or FUL led to diminished AMP-activated protein kinase a (AMPKa) activity in MCF-7 cells. E2 increases FASN levels in MDA-MB-231 cells regardless of miR-33a cellular levels. miR-33a inhibitor co-treatment suppressed E2-mediated AMPKa activity in MDA-MB-231 cells. (4) Conclusions: The cellular expression levels of miR-33a are critical to understanding differential responses which include cellular energy sensors such as AMPKa activation status in breast cancer cells.

Description

Keywords

Estrogen, Breast Cancer, miR-33a, Adipogenesis, FASN, Fulvestrant

Citation

Kılbaş, P. Ö., Sönmez, Ö., Obakan Yerlikaya, P., Gürkan, A. Ç., Palavan Ünsal, N., Uysal Onganer, P., & Arısan, E. D. (2021). In vitro investigations of miR 33a expression in estrogen receptor targeting therapies in breast cancer cells.