Publication:
Utilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids With A Comparative Analysis of Ten Distributions

dc.contributor.authorWadi, Mohammed
dc.contributor.authorELMASRY, WİSAM
dc.contributor.authorÇolak, İlhami
dc.contributor.authorJouda, Muhammed
dc.contributor.authorKüçük, İsmail
dc.date.accessioned2024-05-24T08:34:31Z
dc.date.available2024-05-24T08:34:31Z
dc.date.issued2024
dc.description.abstractRenewable energy presents the most favorable approach to address the escalating challenge of greenhouse gas emissions while simultaneously guaranteeing the safeguarding of the environment. This article utilizes ten different distributions to approximate the wind energy integration in smart grids. The employed distributions are Rayleigh, Poisson, Weibull, Normal, Gamma, Laplace, LogNormal, Nakagami, Birnbaum Saunders, and Burr. The parameters of each distribution are calculated based on metaheuristic methods such as particle swarm optimization and genetic algorithms. Six error criteria have been employed to evaluate the precision of introduced distributions and metaheuristic methods. The approximation is performed by utilizing the wind data collected over three years hourly in the Marmara region of Turkiye. The empirical findings indicate that Gamma, Burr, and Weibull distributions exhibit more significant superiority than the remaining distributions across all datasets.en
dc.identifier.citationWadi, M., Elmasry, W., Colak, I., Jouda, M., & Kucuk, I. (2024). Utilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids With A Comparative Analysis of Ten Distributions. Electric Power Components and Systems, 1–36.
dc.identifier.issn1532-5008
dc.identifier.scopus2-s2.0-85192156067
dc.identifier.urihttps://doi.org/10.1080/15325008.2024.2346830
dc.identifier.urihttps://hdl.handle.net/11413/9180
dc.identifier.wos1217393500001
dc.language.isoen
dc.publisherTaylor & Francis Inc.
dc.relation.journalElectric Power Components and Systems
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSmart Grids
dc.subjectWind Energy
dc.subjectStatistical Distributions
dc.subjectGenetic Algorithms
dc.subjectParticle Swarm Optimization
dc.titleUtilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids With A Comparative Analysis of Ten Distributionsen
dc.typeArticle Early Access
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus
local.journal.endpage36
local.journal.startpage1
relation.isAuthorOfPublication2df31c35-4520-474f-ab80-a73b8e6a3b11
relation.isAuthorOfPublication.latestForDiscovery2df31c35-4520-474f-ab80-a73b8e6a3b11

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
↓ Tam Metin/Full Text
Size:
2.76 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: