Publication:
Harmonic Close-to-Convex Mappings Associated with Salagean q-differential Operator

dc.contributor.authorMishra, Omendra
dc.contributor.authorÇETİNKAYA, ASENA
dc.contributor.authorSokol, Janusz
dc.date.accessioned2025-11-19T09:10:11Z
dc.date.issued2025
dc.description.abstractIn this paper, we define a new subclass (Formula presented) of analytic functions and a new subclass (Formula presented) of harmonic functions (Formula presented) associated with Sălăgean q-differential operator. We prove that a harmonic function (Formula presented) belongs to the class (Formula presented) if and only if the analytic functions h+∊g belong to (Formula presented) for each ∊ (|∊| = 1), and using a method by Clunie and Sheil-Small, we determine a sufficient condition for the class (Formula presented) to be close-to-convex. We provide sharp coefficient estimates, sufficient coefficient condition, and convolution properties for such functions classes. We also determine several conditions of partial sums of (Formula presented).
dc.identifier70
dc.identifier.citationMishra, O., Cetinkaya, A., & Sokól, J. (2025). Harmonic close-to-convex mappings associated with Salagean q-differential operator. Stud. Univ. Babes-Bolyai Math, 70, 33-49.
dc.identifier.issn0252-1938
dc.identifier.scopus2-s2.0-105000539708
dc.identifier.urihttps://doi.org/10.24193/subbmath.2025.1.03
dc.identifier.urihttps://hdl.handle.net/11413/9726
dc.language.isoen
dc.publisherBabes-Bolyai University
dc.relation.journalStudia Universitatis Babes-Bolyai Mathematica
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAlagean q-differential Operator
dc.subjectAnalytic Functions
dc.subjectHarmonic Functions
dc.subjectPartial Sums
dc.titleHarmonic Close-to-Convex Mappings Associated with Salagean q-differential Operator
dc.typeArticle
dspace.entity.typePublication
local.indexed.atScopus
local.journal.endpage49
local.journal.issue1
local.journal.startpage33

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
Tam Metin/Full Text
Size:
383.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: