Publication:
Numerical solution of integral equations by using local polynomial regression

dc.contributor.authorÇağlar, Nazan
dc.contributor.authorÇağlar, Hikmet
dc.contributor.authorIDTR114368tr_TR
dc.contributor.authorIDTR110809tr_TR
dc.date.accessioned2016-04-26T11:08:50Z
dc.date.available2016-04-26T11:08:50Z
dc.date.issued2008-04
dc.description.abstractIn this paper, we find numerical solution of x(t) + lambda integral(b)(a)k(t,s)x(s)ds = y(t) a <= t <= b or x(t) + lambda integral(b)(a) k(t,s)x(s)ds = y(t) a <= t <= b, a <= s <= b by Local Polynomial Regression (LPR). We shown that, present new method is powerful in solving both Fredholm and Volterra integral equations. The method is tested on some model problems to demonstrate its usefulness. The convergence of the method is discusses.tr_TR
dc.identifier.issn1521-1398
dc.identifier.scopus2-s2.0-45949101518
dc.identifier.scopus2-s2.0-45949101518en
dc.identifier.urihttp://hdl.handle.net/11413/1200
dc.identifier.wos253261000006
dc.identifier.wos253261000006en
dc.language.isoen_UStr_TR
dc.publisherEUDOXUS PRESS, LLC, 1424 BEAVER TRAIL DRIVE, CORDOVA, TN 38016 USAtr_TR
dc.relationJOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONStr_TR
dc.subjectintegral equationstr_TR
dc.subjectlocal polynomial regressiontr_TR
dc.subjectKernel functionstr_TR
dc.subjectintegral denklemlertr_TR
dc.subjectyerel polinom regresyontr_TR
dc.subjectçekirdek fonksiyonlarıtr_TR
dc.titleNumerical solution of integral equations by using local polynomial regressiontr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.indexed.atwos

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: