Publication: Harmonic mappings related to the m-fold starlike functions
Program
Authors
Advisor
Date
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
In the present paper we will give some properties of the subclass of harmonic mappings which is related to m-fold starlike functions in the open unit disc D = {z parallel to z vertical bar < 1}. Throughout this paper we restrict ourselves to the study of sense-preserving harmonic mappings. We also note that an elegant and complete treatment theory of the harmonic mapping is given in Durens monograph (Duren, 1983). The main aim of us to investigate some properties of the new class of us which represented as in the following form,
S*H(m) = {f = h(z) + <(g(z))over bar>vertical bar f is an element of SH(m), g'(z)/h'(z) < b(1)p(z), h(z) is an element of S*(m), p(z) is an element of P-(m)},
where h(z) = z + Sigma(infinity)(n-1) a(mn+1)z(mn+1), g(z) = Sigma(infinity)(n-0) b(mn+1)z(mn+1), vertical bar b(1)vertical bar < 1. Crown Copyright (C) 2014 Published by Elsevier Inc. All rights reserved.