Person:
ÇELİK, ÖZGE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Oğr.Gor.

Last Name

ÇELİK

First Name

ÖZGE

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationRestricted
    Comparison of Tolerance Related Proteomic Profiles of Two Drought Tolerant Tomato Mutants Improved by Gamma Radiation
    (Elsevier B.V., 2021) ÇELİK, ÖZGE; AYAN, ALP; MERİÇ, SİNAN; ATAK, ÇİMEN
    Lycopersicon esculentum L., also known as tomato, is an important industrial plant due to its products which worth billions of dollars annually, besides its nutritional value and health benefits. In this study, we investigated the two-dimensional protein expression profiles in drought tolerant mutant plants derived from industrial 5MX12956 tomato variety by Cs-137 gamma radiation source induced mutations. Drought tolerance of mutants were evaluated and confirmed by in vivo and in vitro methods. Eleven drought responsive protein spots were identified by two-dimensional electrophoresis and MALDI-TOF-MS. Identified proteins which presented differential expression under drought conditions were clustered under six distinct groups based on their cellular functions. These clusters are ATP and carbohydrate metabolism, mRNA processing and protein phosphorylation, oxidation reduction and stress response, signaling and supporting cytoskeleton. Our results contributed proteomic data to drought tolerance of our tomato mutants which were originated from drought susceptible 5MX12956 variety. They may also facilitate basis for future investigations into the genetic and physiological aspects of this tolerance. © 2021 Elsevier B.V.
  • Publication
    Heavy Metal Stress-Responsive Phyto-miRNAs
    (Springer Science and Business Media B.V., 2020) ÇELİK, ÖZGE; AYAN, ALP; MERİÇ, SİNAN; ATAK, ÇİMEN
    Heavy metal stress is a leading abiotic stress factor in the twenty-first century as a reflection of industrial developments and extensive urbanization. Plants adopt several adaptation mechanisms to cope with deleterious effects of heavy metal stress. Biosynthesis of amino acids/organic acids, phytochelatins (PCs), metallothioneins (MTs), heat-shock proteins (HSPs), metal chelators, chaperons, ABC-type transporters, and CDF family metal transporters are among the heavy metal binding or transporting mechanisms in plants. This chapter emphasizes phyto-miRNAs related to these tolerance mechanism pathways. Moreover, transcription factors which are targeted by heavy metal-related phyto-miRNAs are also summarized under the effect of various heavy metals due to their intertwined regulatory mechanisms.
  • PublicationRestricted
    Investigation of Tos17 LTR Retrotransposon Movements in Rice (Oryza sativa L.) Under Nickel and Boron Stress
    (Springer Heidelberg, 2024) MERİÇ, SİNAN; AYAN, ALP; GÜNDÜZ, BURCU; ÖZPİRİNÇCİ, CAN; ÇELİK, ÖZGE; ATAK, ÇİMEN
    Heavy metal and metalloid pollution caused by the industrialization became a leading stress factors for agricultural plants. The increase in the amount of nickel and boron in agricultural areas due to mining and increasing industrial activity is an important agricultural constraint. The difference between deficiency and toxicity levels of these heavy metal and metalloid is extremely critical. Nickel and boron are important micronutrients for plant growth, while they become toxic at critical densities. Plants exhibit different responses to these pollutants. It is essential to find specific biomarkers to discriminate the tolerant varieties to develop elite varieties. Transposable elements are known to have an efficient role against environmental stress factors. In this research, we evaluated the potential use of Tos17 retrotransposon movement as a molecular marker to identify the stress tolerances of two Oryza sativa L. varieties against nickel and boron pollutants.
  • PublicationRestricted
    Physiological Characterization and Assessment of Genetic Variability, Yield, and Quality Properties of Gamma-ray-induced Salinity Tolerant Soybean (Glycine Max (L.) Merrill) Mutants
    (Julius Kuhn-Institut Federal Research Center for Cultivated Plants, 2024) ATAK, ÇİMEN; ÇELİK, ÖZGE; GÜMÜŞ, TAMER; MERİÇ, SİNAN; AYAN, ALP; Erdoğmuş, Mehmet
    Soybean is an important industrial oilseed plant. As a relatively fast, flexible, cheap, and viable method, mutation breeding, which induces significant random genetic variations, is a widely used method in crop science. In the present study, we investigated physiological parameters, genetic variability, yield, and quality properties of salinity-tolerant mutant plants derived from Ataem-7 and S04-05 soybean varieties by Cs-137 gamma radiation-induced mutations. The SM4 and SM3 mutants exhibited a greater genetic distance than all other salinity tolerant mutants did. SM3 mutant presented 16.8% lower lipid peroxidation under salinity stress. The most significant photosynthetic pigment increase was detected for chlorophyll b in SM4 and SM3 mutants, with values of 1.88 and 2.07-fold, respectively. The SM3 mutant exhibited the highest yield, at 437.6 kg/ha in the M3 generation, while AM1 presented the highest yield in the M4 generation. The AM1 mutant also had the highest pod count by 122.2 per plant. In the AM1 mutant, the photosynthetic pigment increase was 16.69% for chlorophyll a, 37.9% for chlorophyll b and 22.9% for total chlorophyll. These results provide a basis for future investigations in soybean mutation breeding studies for salinity stress tolerance, and also indicate the effectiveness of mutation breeding methods in agricultural breeding programs. © 2024 Julius Kuhn-Institut Federal Research Center for Cultivated Plants. All rights reserved.