Browsing by Author "Djamgoz, Mustafa B. A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Restricted Lidocaine Inhibits Rat Prostate Cancer Cell Invasiveness and Voltage-Gated Sodium Channel Expression in Plasma Membrane(Springer, 2024) Rizaner, Nahit; Fraser, Scott P.; Gül, İlknur Bugan; Purut, Esma; Djamgoz, Mustafa B. A.; ALTUN, SEYHANThere is increasing evidence, mostly from breast cancer, that use of local anaesthetics during surgery can inhibit disease recurrence by suppressing the motility of the cancer cells dependent on inherent voltage-gated sodium channels (VGSCs). Here, the possibility that lidocaine could affect cellular behaviours associated with metastasis was tested using the Dunning cell model of rat prostate cancer. Mostly, the strongly metastatic (VGSC-expressing) Mat-LyLu cells were used under both normoxic and hypoxic conditions. The weakly metastatic AT-2 cells served for comparison in some experiments. Lidocaine (1-500 mu M) had no effect on cell viability or growth but suppressed Matrigel invasion dose dependently in both normoxia and hypoxia. Used as a control, tetrodotoxin produced similar effects. Exposure to hypoxia increased Nav1.7 mRNA expression but VGSC alpha protein level in plasma membrane was reduced. Lidocaine under both normoxia and hypoxia had no effect on Nav1.7 mRNA expression. VGSC alpha protein expression was suppressed by lidocaine under normoxia but no effect was seen in hypoxia. It is concluded that lidocaine can suppress prostate cancer invasiveness without effecting cellular growth or viability. Extended to the clinic, the results would suggest that use of lidocaine, and possibly other local anaesthetics, during surgery can suppress any tendency for post-operative progression of prostate cancer.Publication Open Access Riluzole: Anti-Invasive Effects on Rat Prostate Cancer Cells Under Normoxic and Hypoxic Conditions(Blackwell Publishing Ltd., 2020) Rizaner, Nahit; Uzun, Sercan; Fraser, Scott P.; Djamgoz, Mustafa B. A.; ALTUN, SEYHANAnti-invasive effects of riluzole and ranolazine, a neuro-protectant and an anti-anginal drug, respectively, on Mat-LyLu rat prostate cancer (PCa) cells were tested in vitro (a) at non-toxic doses and (b) under both normoxic and hypoxic conditions, the latter common to growing tumours. Tetrodotoxin (TTX) was used as a positive control. Hypoxia had no effect on cell viability but reduced growth at 48 hours. Riluzole (5 μmol/L) or ranolazine (20 μmol/L) had no effect on cell viability or growth under normoxia or hypoxia over 24 hours. Matrigel invasion was not affected by hypoxia but inhibited by TTX, ranolazine and riluzole under a range of conditions. The expression of Nav1.7 mRNA, the prevailing, pro-invasive voltage-gated sodium channel α-subunit (VGSCα), was up-regulated by hypoxia. Riluzole had no effect on Nav1.7 mRNA expression in normoxia but significantly reduced it in hypoxia. VGSCα protein expression in plasma membrane was reduced in hypoxia; riluzole increased it but only under hypoxia. It was concluded (a) that riluzole and ranolazine have anti-invasive effects on rat PCa cells and (b) that Nav1.7 mRNA and protein expression can be modulated by riluzole under hypoxia. Overall, therefore, riluzole and ranolazine may ultimately be "repurposed" as anti-metastatic drugs against PCa.