Publication:
Krivine's Function Calculus and Bochner Integration

dc.contributor.authorTroitsky, VG
dc.contributor.authorTÜRER, MEHMET SELÇUK
dc.date.accessioned2019-10-15T07:42:14Z
dc.date.available2019-10-15T07:42:14Z
dc.date.issued2019-09
dc.description.abstractWe prove that Krivine's Function Calculus is compatible with integration. Let (Omega, Sigma, mu) be a finite measure space, X a Banach lattice, x epsilon X-n, and f : R-n x Omega -> R a function such that f(., w) is continuous and positively homogeneous for every w E 12, and f (s, ") is integrable for every s E R. Put F(s) = f f (s, w) d (w) and define F(x) and f (x, w) via Krivine's Function Calculus. We prove that under certain natural assumptions F(x) = f f (x, w) d (w), where the right hand side is a Bochner integral.
dc.identifier62tr_TR
dc.identifier.scopus2-s2.0-85071908756
dc.identifier.scopus2-s2.0-85071908756en
dc.identifier.urihttps://hdl.handle.net/11413/5411
dc.identifier.wos484048700018
dc.identifier.wos484048700018en
dc.language.isoen_UStr_TR
dc.publisherCAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLANDtr_TR
dc.relation.journalJournal Citation Reportstr_TR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBanach Lattice
dc.subjectFunction Calculus
dc.subjectBochner Integral
dc.titleKrivine's Function Calculus and Bochner Integration
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.indexed.atwos
local.journal.endpage669tr_TR
local.journal.issue3tr_TR
local.journal.startpage663
relation.isAuthorOfPublication0512de01-b400-4cfb-b47f-239d87295185
relation.isAuthorOfPublication.latestForDiscovery0512de01-b400-4cfb-b47f-239d87295185

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: