Publication: Krivine's Function Calculus and Bochner Integration
dc.contributor.author | Troitsky, VG | |
dc.contributor.author | TÜRER, MEHMET SELÇUK | |
dc.date.accessioned | 2019-10-15T07:42:14Z | |
dc.date.available | 2019-10-15T07:42:14Z | |
dc.date.issued | 2019-09 | |
dc.description.abstract | We prove that Krivine's Function Calculus is compatible with integration. Let (Omega, Sigma, mu) be a finite measure space, X a Banach lattice, x epsilon X-n, and f : R-n x Omega -> R a function such that f(., w) is continuous and positively homogeneous for every w E 12, and f (s, ") is integrable for every s E R. Put F(s) = f f (s, w) d (w) and define F(x) and f (x, w) via Krivine's Function Calculus. We prove that under certain natural assumptions F(x) = f f (x, w) d (w), where the right hand side is a Bochner integral. | |
dc.identifier | 62 | tr_TR |
dc.identifier.scopus | 2-s2.0-85071908756 | |
dc.identifier.scopus | 2-s2.0-85071908756 | en |
dc.identifier.uri | https://hdl.handle.net/11413/5411 | |
dc.identifier.wos | 484048700018 | |
dc.identifier.wos | 484048700018 | en |
dc.language.iso | en_US | tr_TR |
dc.publisher | CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND | tr_TR |
dc.relation.journal | Journal Citation Reports | tr_TR |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Banach Lattice | |
dc.subject | Function Calculus | |
dc.subject | Bochner Integral | |
dc.title | Krivine's Function Calculus and Bochner Integration | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | scopus | |
local.indexed.at | wos | |
local.journal.endpage | 669 | tr_TR |
local.journal.issue | 3 | tr_TR |
local.journal.startpage | 663 | |
relation.isAuthorOfPublication | 0512de01-b400-4cfb-b47f-239d87295185 | |
relation.isAuthorOfPublication.latestForDiscovery | 0512de01-b400-4cfb-b47f-239d87295185 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.82 KB
- Format:
- Item-specific license agreed upon to submission
- Description: