Publication:
Model order reduction for nonlinear Schrodinger equation

dc.contributor.authorKarasözen, Bülent
dc.contributor.authorAkkoyunlu, Canan
dc.contributor.authorUzunca, Murat
dc.contributor.authorID1233tr_TR
dc.contributor.authorID113376tr_TR
dc.contributor.authorID163841tr_TR
dc.date.accessioned2018-07-13T09:36:15Z
dc.date.available2018-07-13T09:36:15Z
dc.date.issued2015-05-01
dc.description.abstractWe apply the proper orthogonal decomposition (POD) to the nonlinear Schrodinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic mid-point rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations, coupled NLS equation with soliton solutions show that the low-dimensional approximations obtained by POD reproduce very well the characteristic dynamics of the system, such as preservation of energy and the solutions. (C) 2015 Elsevier Inc. All rights reserved.tr_TR
dc.identifier.issn0096-3003
dc.identifier.other1873-5649
dc.identifier.urihttps://doi.org/10.1016/j.amc.2015.02.001
dc.identifier.urihttps://hdl.handle.net/11413/2076
dc.identifier.wos351668500047
dc.identifier.wos351668500047en
dc.language.isoen_UStr_TR
dc.publisherElsevier Science Inc, 360 Park Ave South, New York, Ny 10010-1710 USAtr_TR
dc.relationApplied Mathematics and Computationtr_TR
dc.subjectNonlinear Schrodinger equationtr_TR
dc.subjectProper orthogonal decompositiontr_TR
dc.subjectModel order reductiontr_TR
dc.subjectError analysistr_TR
dc.titleModel order reduction for nonlinear Schrodinger equationtr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atwos

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: