Publication:
Comparison of Face Recognition Algorithms

dc.contributor.authorEnsari, Tolga
dc.contributor.authorGÜNAY, MELİKE
dc.contributor.authorID286270tr_TR
dc.contributor.authorID176400tr_TR
dc.date.accessioned2018-07-23T13:30:06Z
dc.date.available2018-07-23T13:30:06Z
dc.date.issued2017
dc.description.abstractin this study, we analyze the algorithms that is used for face recognition and make performance comparison of two algorithms. The methods that is analyzed are k-nearest neighbors, Naive Bayes, eigenfaces, principle component analysis (PCA) and k-means are implemented on ORL face dataset. As a result of the analysis, k-nearest neighbors algorithm and eigenfaces algoritm are the most successful and Naive Bayes has the worst performance result. Performance of k-nearest neighborhood which is the most succesfull one is decreasing from %94 to %91.5 after the princible component analysis. In addition, the difference increases to %7 for Naive Bayes algorithm.tr_TR
dc.identifier.isbn978-1-5090-6494-6
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11413/2273
dc.identifier.wos413813100332
dc.identifier.wos413813100332en
dc.language.isoen_UStr_TR
dc.publisherIEEE, 345 E 47Th St, New York, Ny 10017 USAtr_TR
dc.relation2017 25th Signal Processing and Communications Applications Conference (SIU)tr_TR
dc.subjectMachine Learningtr_TR
dc.subjectFace Recognitiontr_TR
dc.subjectPrinciple Component Analysis (PCA)tr_TR
dc.subjectNaive Bayestr_TR
dc.subjectK-meanstr_TR
dc.subjectK-nearest Neighbortr_TR
dc.titleComparison of Face Recognition Algorithmstr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atwos
relation.isAuthorOfPublication97f96df2-25e0-419f-8320-7ea9a4685390
relation.isAuthorOfPublication.latestForDiscovery97f96df2-25e0-419f-8320-7ea9a4685390

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: