Publication:
Image Reconstruction from Sparse Samples Using Directional Total Variation Minimization

dc.contributor.authorDemircan Türeyen, Ezgi
dc.contributor.authorKamasak, Mustafa E.
dc.contributor.authorBayram, İlker
dc.contributor.authorID237397tr_TR
dc.contributor.authorID190955tr_TR
dc.date.accessioned2018-07-19T10:37:32Z
dc.date.available2018-07-19T10:37:32Z
dc.date.issued2016
dc.description.abstractThis paper considers reconstruction of missing pixels and formulates the problem under directional total variation (DTV) regularization. In order to devise an algorithm, forward-backward splitting method is used as a convex optimization tool, in conjunction with a fast projected gradient-based algorithm. The results are compared with the results of TV-based setting, and the utility of using DTV is shown in terms of accuracy, when an image with a dominant direction is the case.tr_TR
dc.identifier.isbn978-1-5090-1679-2
dc.identifier.urihttps://hdl.handle.net/11413/2202
dc.identifier.urihttps://doi.org/10.1109/SIU.2016.7495957
dc.identifier.wos391250900273
dc.language.isoen
dc.publisherIEEE, 345 E 47Th St, New York, Ny 10017 USA
dc.relation2016 24th Signal Processing and Communication Application Conference (SIU)tr_TR
dc.subjectimage reconstructiontr_TR
dc.subjectdirectional total variationtr_TR
dc.subjectconvex optimizationtr_TR
dc.subjectproximal splitting methodstr_TR
dc.subjectAlgorithmstr_TR
dc.titleImage Reconstruction from Sparse Samples Using Directional Total Variation Minimizationtr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: