Publication:
Combination Ensemble and Explainable Deep Learning Framework for High-Accuracy Classification of Wild Edible Macrofungi

dc.contributor.authorKORKMAZ, ARAS FAHRETTİN
dc.contributor.authorEkinci, Fatih
dc.contributor.authorKumru, Eda
dc.contributor.authorAltas, Sehmus
dc.contributor.authorGunes, Seyit Kaan
dc.contributor.authorYalcin, Ahmet Tunahan
dc.contributor.authorGuzel, Mehmet Serdar
dc.contributor.authorAkata, Ilgaz
dc.date.accessioned2026-01-14T07:36:36Z
dc.date.issued2025
dc.description.abstractAccurate identification of wild edible macrofungi is essential for biodiversity conservation, food safety, and ecological sustainability, yet remains challenging due to the morphological similarity between edible and toxic species. In this study, a curated dataset of 24 wild edible macrofungi species was analyzed using six state-of-the-art convolutional neural networks (CNNs) and four ensemble configurations, benchmarked across eight evaluation metrics. Among individual models, EfficientNetB0 achieved the highest performance (95.55% accuracy), whereas MobileNetV3-L underperformed (90.55%). Pairwise ensembles yielded inconsistent improvements, highlighting the importance of architectural complementarity. Notably, the proposed Combination Model, integrating EfficientNetB0, ResNet50, and RegNetY through a hierarchical voting strategy, achieved the best results with 97.36% accuracy, 0.9996 AUC, and 0.9725 MCC, surpassing all other models. To enhance interpretability, explainable AI (XAI) methods Grad-CAM, Eigen-CAM, and LIME were employed, consistently revealing biologically meaningful regions and transforming the framework into a transparent decision-support tool. These findings establish a robust and scalable paradigm for fine-grained fungal classification, demonstrating that carefully engineered ensemble learning combined with XAI not only advances mycological research but also paves the way for broader applications in plant recognition, spore analysis, and large-scale vegetation monitoring from satellite imagery.en
dc.identifier14
dc.identifier.citationKorkmaz, A. F., Ekinci, F., Kumru, E., Altaş, Ş., Güneş, S. K., Yalçın, A. T., Güzel, M. S., & Akata, I. (2025). Combination Ensemble and Explainable Deep Learning Framework for High-Accuracy Classification of Wild Edible Macrofungi. Biology, 14(12), 1644.
dc.identifier.issn2079-7737
dc.identifier.pubmed41463418
dc.identifier.scopus2-s2.0-105025771095
dc.identifier.urihttps://doi.org/10.3390/biology14121644
dc.identifier.urihttps://hdl.handle.net/11413/9809
dc.identifier.wos001646945700001
dc.language.isoen
dc.publisherMDPI
dc.relation.journalBiology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDeep Learning
dc.subjectEdible Mushroom
dc.subjectEnsemble Models
dc.subjectExplainable AI
dc.subjectSpecies Classification
dc.titleCombination Ensemble and Explainable Deep Learning Framework for High-Accuracy Classification of Wild Edible Macrofungi
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus
local.indexed.atPubMed
local.journal.endpage39
local.journal.issue12
local.journal.startpage1
relation.isAuthorOfPublication30891c98-9abc-429c-90ad-2b9b415e73bc
relation.isAuthorOfPublication.latestForDiscovery30891c98-9abc-429c-90ad-2b9b415e73bc

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tam Metin/Full Text
Size:
13.48 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: