Publication:
Statistical Quasi Cauchyness on Asymmetric Spaces

dc.contributor.authorDAĞCI, FİKRİYE İNCE
dc.date.accessioned2025-10-21T07:58:42Z
dc.date.issued2025
dc.description.abstractWe call a sequence (xm) of points in an asymmetric metric space (X, d) statistically forward quasi 1 Cauchy if lim (Formula present) for each positive ε, where |A| indicates the cardinality of the set A. We prove that a subset E of X is forward totally bounded if and only if any sequence of points in E has a statistically forward quasi Cauchy subsequence. We also introduce and investigate statistically upward continuity in the sense that a function defined on X into Y is called statistically upward continuous if it preserves statistically forward quasi Cauchy sequences, i.e. (f (xm)) is statistically forward quasi Cauchy whenever (xm) is.
dc.identifier39
dc.identifier.citationDagci, F. I. (2025). Statistical quasi Cauchyness on asymmetric spaces. Filomat, 39(18), 6383–6390.
dc.identifier.issn03545180
dc.identifier.scopus2-s2.0-105018790160
dc.identifier.urihttps://doi.org/10.2298/FIL2518383D
dc.identifier.urihttps://hdl.handle.net/11413/9682
dc.identifier.wos001589005400001
dc.language.isoen
dc.publisherUniversity of Nis
dc.relation.journalFilomat
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAsymmetric Metric
dc.subjectCompactness
dc.subjectContinuity
dc.titleStatistical Quasi Cauchyness on Asymmetric Spaces
dc.typeArticle
dspace.entity.typePublication
local.indexed.atScopus
local.indexed.atWOS
local.journal.endpage6390
local.journal.issue18
local.journal.startpage6383

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
Tam Metin/Full Text
Size:
194.53 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: