Publication: Statistical Quasi Cauchyness on Asymmetric Spaces
dc.contributor.author | DAĞCI, FİKRİYE İNCE | |
dc.date.accessioned | 2025-10-21T07:58:42Z | |
dc.date.issued | 2025 | |
dc.description.abstract | We call a sequence (xm) of points in an asymmetric metric space (X, d) statistically forward quasi 1 Cauchy if lim (Formula present) for each positive ε, where |A| indicates the cardinality of the set A. We prove that a subset E of X is forward totally bounded if and only if any sequence of points in E has a statistically forward quasi Cauchy subsequence. We also introduce and investigate statistically upward continuity in the sense that a function defined on X into Y is called statistically upward continuous if it preserves statistically forward quasi Cauchy sequences, i.e. (f (xm)) is statistically forward quasi Cauchy whenever (xm) is. | |
dc.identifier | 39 | |
dc.identifier.citation | Dagci, F. I. (2025). Statistical quasi Cauchyness on asymmetric spaces. Filomat, 39(18), 6383–6390. | |
dc.identifier.issn | 03545180 | |
dc.identifier.scopus | 2-s2.0-105018790160 | |
dc.identifier.uri | https://doi.org/10.2298/FIL2518383D | |
dc.identifier.uri | https://hdl.handle.net/11413/9682 | |
dc.identifier.wos | 001589005400001 | |
dc.language.iso | en | |
dc.publisher | University of Nis | |
dc.relation.journal | Filomat | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Asymmetric Metric | |
dc.subject | Compactness | |
dc.subject | Continuity | |
dc.title | Statistical Quasi Cauchyness on Asymmetric Spaces | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | Scopus | |
local.indexed.at | WOS | |
local.journal.endpage | 6390 | |
local.journal.issue | 18 | |
local.journal.startpage | 6383 |