Publication:
YouTube Video Comments Sentiment Analysis Using Custom NLP Model

dc.contributor.authorERCİKAN, YAVUZ SELİM
dc.contributor.authorELMASRY, WİSAM
dc.date.accessioned2025-11-13T08:52:35Z
dc.date.issued2025
dc.description.abstractThis paper presents a sentiment analysis platform designed to process user comments on YouTube videos. Leveraging an LSTM-based neural network trained on large-scale datasets such as Sentiment140 and a 3-million-row Twitter sentiment dataset, the platform categorizes comments into positive, negative, or neutral sentiments. It integrates modern web technologies like React.js for the front-end, Flask for the back-end, Firebase for user authentication, and the YouTube Data API for comment retrieval. Additionally, OpenAI's language models are employed to provide advanced contextual analysis, extracting key themes and emotional trends from the comments. The system visualizes sentiment distributions using dynamic charts, offering insights valuable for content creators and researchers. This work demonstrates the effective combination of deep learning and scalable web technologies to build a user-friendly sentiment analysis solution.en
dc.identifier.citationY. S. Ercikan and W. Elmasry, "YouTube Video Comments Sentiment Analysis Using Custom NLP Model," 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA), Ankara, Turkiye, 2025, pp. 1-7.
dc.identifier.isbn979-833151088-6
dc.identifier.issn2996-4385
dc.identifier.scopus2-s2.0-105008420287
dc.identifier.urihttps://doi.org/10.1109/ICHORA65333.2025.11017222
dc.identifier.urihttps://hdl.handle.net/11413/9714
dc.identifier.wos001533792800197
dc.language.isoen
dc.publisherIEEE
dc.relation.journalICHORA 2025 - 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDeep Learning
dc.subjectNatural Language Processing
dc.subjectScalable Web Platform
dc.subjectSentiment Analysis
dc.subjectYouTube Comments
dc.titleYouTube Video Comments Sentiment Analysis Using Custom NLP Model
dc.title.alternativeInternational Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings
dc.typeconferenceObject
dspace.entity.typePublication
local.indexed.atScopus
local.indexed.atWOS
local.journal.endpage7
local.journal.startpage1
relation.isAuthorOfPublication2df31c35-4520-474f-ab80-a73b8e6a3b11
relation.isAuthorOfPublication.latestForDiscovery2df31c35-4520-474f-ab80-a73b8e6a3b11

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
Tam Metin/Full Text
Size:
2.05 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: