Publication:
On some alpha-convex functions

dc.contributorFen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Sciencetr_TR
dc.contributor.authorOwa, Shigeyoshi
dc.contributor.authorAcu, Mugur
dc.contributor.authorAl-Oboudi, Fatima
dc.contributor.authorDarus, Maslina
dc.contributor.authorYAVUZ, EMEL
dc.contributor.authorPOLATOĞLU, YAŞAR
dc.contributor.authorID199370tr_TR
dc.contributor.authorID111202tr_TR
dc.date.accessioned2018-09-06T06:12:16Z
dc.date.available2018-09-06T06:12:16Z
dc.date.issued2008-06
dc.description.abstractIn this paper, we define a general class of α-convex functions, denoted by MLβ,α(q), with respect to a convex domain D (q(z) ∈ Hu(U), q(0) = 1 , q(U) = D) contained in the right half plane by using the linear operator D β λ defined by D β λ : A → A , D β λ f(z) = z + X∞ j=2 (1 + (j − 1)λ) β ajz j , where β, λ ∈ R, β ≥ 0, λ ≥ 0 and f(z) = z+ X∞ j=2 ajz j . Regarding the class MLβ,α(q), we give a inclusion theorem and a transforming theorem, from which we may obtain many particular results.tr_TR
dc.identifier1tr_TR
dc.identifier1tr_TR
dc.identifier1tr_TR
dc.identifier.urihttps://hdl.handle.net/11413/2650
dc.language.isoen_UStr_TR
dc.relationInternational Journal of Open Problems in Computer Science and Mathematicstr_TR
dc.subjectα-convex functionstr_TR
dc.subjectgeneralized Libera integral operatortr_TR
dc.subjectBriotBouquet differential subordinationtr_TR
dc.subjectmodified S˘al˘agean operatortr_TR
dc.titleOn some alpha-convex functionstr_TR
dc.typeArticletr_TR
dspace.entity.typePublication
relation.isAuthorOfPublication81262ad8-8f70-404c-9c30-d462b476e9eb
relation.isAuthorOfPublication82125b62-3d7a-489a-8c3f-a104e98d346e
relation.isAuthorOfPublication.latestForDiscovery81262ad8-8f70-404c-9c30-d462b476e9eb

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
On Some α-Convex Functions.pdf
Size:
135.05 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: