Publication: On some alpha-convex functions
dc.contributor | Fen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Science | tr_TR |
dc.contributor.author | Owa, Shigeyoshi | |
dc.contributor.author | Acu, Mugur | |
dc.contributor.author | Al-Oboudi, Fatima | |
dc.contributor.author | Darus, Maslina | |
dc.contributor.author | YAVUZ, EMEL | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | 199370 | tr_TR |
dc.contributor.authorID | 111202 | tr_TR |
dc.date.accessioned | 2018-09-06T06:12:16Z | |
dc.date.available | 2018-09-06T06:12:16Z | |
dc.date.issued | 2008-06 | |
dc.description.abstract | In this paper, we define a general class of α-convex functions, denoted by MLβ,α(q), with respect to a convex domain D (q(z) ∈ Hu(U), q(0) = 1 , q(U) = D) contained in the right half plane by using the linear operator D β λ defined by D β λ : A → A , D β λ f(z) = z + X∞ j=2 (1 + (j − 1)λ) β ajz j , where β, λ ∈ R, β ≥ 0, λ ≥ 0 and f(z) = z+ X∞ j=2 ajz j . Regarding the class MLβ,α(q), we give a inclusion theorem and a transforming theorem, from which we may obtain many particular results. | tr_TR |
dc.identifier | 1 | tr_TR |
dc.identifier | 1 | tr_TR |
dc.identifier | 1 | tr_TR |
dc.identifier.uri | https://hdl.handle.net/11413/2650 | |
dc.language.iso | en_US | tr_TR |
dc.relation | International Journal of Open Problems in Computer Science and Mathematics | tr_TR |
dc.subject | α-convex functions | tr_TR |
dc.subject | generalized Libera integral operator | tr_TR |
dc.subject | BriotBouquet differential subordination | tr_TR |
dc.subject | modified S˘al˘agean operator | tr_TR |
dc.title | On some alpha-convex functions | tr_TR |
dc.type | Article | tr_TR |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 81262ad8-8f70-404c-9c30-d462b476e9eb | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 81262ad8-8f70-404c-9c30-d462b476e9eb |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- On Some α-Convex Functions.pdf
- Size:
- 135.05 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: