Publication: Finite-dimensional representations of Leavitt path algebras
dc.contributor.author | Özaydın, Murad | |
dc.contributor.author | KOÇ, AYTEN | |
dc.contributor.authorID | 112205 | tr_TR |
dc.date.accessioned | 2018-07-27T08:37:06Z | |
dc.date.available | 2018-07-27T08:37:06Z | |
dc.date.issued | 2018-07 | |
dc.description.abstract | When Gamma is a row-finite digraph, we classify all finite-dimensional modules of the Leavitt path algebra L(Gamma) via an explicit Morita equivalence given by an effective combinatorial (reduction) algorithm on the digraph Gamma. The category of (unital) L(Gamma)-modules is equivalent to a full subcategory of quiver representations of Gamma. However, the category of finite-dimensional representations of L(Gamma) is tame in contrast to the finite-dimensional quiver representations of G, which are almost always wild. | tr_TR |
dc.identifier.issn | 0933-7741 | |
dc.identifier.other | 1435-5337 | |
dc.identifier.scopus | 2-s2.0-85039078151 | |
dc.identifier.uri | https://doi.org/10.1515/forum-2016-0268 | |
dc.identifier.uri | https://hdl.handle.net/11413/2383 | |
dc.identifier.wos | 437914900008 | |
dc.language.iso | en | |
dc.publisher | Walter De Gruyter Gmbh, Genthiner Strasse 13, D-10785 Berlin, Germany | |
dc.relation | Forum Mathematicum | tr_TR |
dc.subject | Leavitt path algebra | tr_TR |
dc.subject | quiver representations | tr_TR |
dc.subject | Morita equivalence | tr_TR |
dc.subject | finite-dimensional modules | tr_TR |
dc.subject | nonstable K-theory | tr_TR |
dc.subject | graph monoid | tr_TR |
dc.subject | dimension function | tr_TR |
dc.subject | K-Theory | tr_TR |
dc.subject | Graph | tr_TR |
dc.title | Finite-dimensional representations of Leavitt path algebras | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | WOS | |
local.indexed.at | Scopus | |
relation.isAuthorOfPublication | 1d1cee12-3073-4646-b8a2-6b031428b2c7 | |
relation.isAuthorOfPublication.latestForDiscovery | 1d1cee12-3073-4646-b8a2-6b031428b2c7 |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: