Publication: Harmonic Function For Which The Second Dilatation is Alpha-Spiral
dc.contributor.author | Duman Yavuz, Emel | |
dc.contributor.author | Aydoğan, Melike | |
dc.contributor.author | Kahramaner, Yasemin | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | 111202 | tr_TR |
dc.contributor.authorID | 35549 | tr_TR |
dc.contributor.authorID | 199370 | tr_TR |
dc.contributor.authorID | 8366 | tr_TR |
dc.date.accessioned | 2017-10-11T08:01:40Z | |
dc.date.available | 2017-10-11T08:01:40Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let f = h + (g) over bar be a harmonic function in the unit disc . We will give some properties of f under the condition the second dilatation is alpha-spiral | tr_TR |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | http://hdl.handle.net/11413/1630 | |
dc.identifier.wos | 315092800001 | |
dc.language.iso | en | |
dc.publisher | Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330, Switzerland | |
dc.relation | Journal Of Inequalities And Applications | tr_TR |
dc.subject | harmonic functions | tr_TR |
dc.subject | growth theorem | tr_TR |
dc.subject | distortion theorem | tr_TR |
dc.subject | coefficient inequality | tr_TR |
dc.subject | harmonik fonksiyonlar | tr_TR |
dc.subject | büyüme teoremi | tr_TR |
dc.subject | bozulma teoremi | tr_TR |
dc.subject | katsayı eşitsizliği | tr_TR |
dc.title | Harmonic Function For Which The Second Dilatation is Alpha-Spiral | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | WOS | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 82125b62-3d7a-489a-8c3f-a104e98d346e |