Publication:
A study on the generalization of Janowski functions in the unit disc

dc.contributorFen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Sciencetr_TR
dc.contributor.authorBolcal, Metin
dc.contributor.authorŞen, A.
dc.contributor.authorYAVUZ, EMEL
dc.contributor.authorPOLATOĞLU, YAŞAR
dc.contributor.authorID199370tr_TR
dc.contributor.authorID111202tr_TR
dc.date.accessioned2018-09-05T13:05:52Z
dc.date.available2018-09-05T13:05:52Z
dc.date.issued2006-01
dc.description.abstractLet › be the class of functions w(z), w(0) = 0, |w(z)| < 1 regular in the unit disc D = {z : |z| < 1}. For arbitrarily fixed numbers A 2 (¡1,1), B 2 (¡1,A), 0 • fi < 1 let P(A,B,fi) be the class of regular functions p(z) in D such that p(0) = 1, and which is p(z) 2 P(A,B,fi) if and only if p(z) = 1+((1¡fi)A+fiB)w(z) 1+Bw(z) for some function w(z) 2 › and every z 2 D. In the present paper we apply the principle of subordination ((1), (3), (4), (5)) to give new proofs for some classical results concerning the class S⁄(A,B,fi) of functions f(z) with f(0) = 0, f0(0) = 1, which are regular in D satisfying the condition: f(z) 2 S⁄(A,B,fi) if and only if z f 0 (z) f(z) = p(z) for some p(z) 2 P(A,B,fi) and for all z in D.tr_TR
dc.identifier.issn1786-0091
dc.identifier.scopus2-s2.0-33646363609
dc.identifier.urihttps://hdl.handle.net/11413/2638
dc.language.isoen_UStr_TR
dc.relationActa Mathematica Academiae Paedagogicae Nyıregyhaziensistr_TR
dc.titleA study on the generalization of Janowski functions in the unit disctr_TR
dc.typeArticletr_TR
dspace.entity.typePublication
local.indexed.atSCOPUS
relation.isAuthorOfPublication81262ad8-8f70-404c-9c30-d462b476e9eb
relation.isAuthorOfPublication82125b62-3d7a-489a-8c3f-a104e98d346e
relation.isAuthorOfPublication.latestForDiscovery81262ad8-8f70-404c-9c30-d462b476e9eb

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A study on the generalization of Janowski functions in the unit disc.pdf
Size:
213.88 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: