Publication:
The use of cross-company fault data for the software fault prediction problem

dc.contributor.authorÇatal, Çağatay
dc.contributor.authorID108363tr_TR
dc.date.accessioned2018-07-19T13:07:44Z
dc.date.available2018-07-19T13:07:44Z
dc.date.issued2016
dc.description.abstractWe investigated how to use cross-company (CC) data in software fault prediction and in predicting the fault labels of software modules when there are not enough fault data. This paper involves case studies of NASA projects that can be accessed from the PROMISE repository. Case studies show that CC data help build high-performance fault predictors in the absence of fault labels and remarkable results are achieved. We suggest that companies use CC data if they do not have any historical fault data when they decide to build their fault prediction models.tr_TR
dc.identifier.issn1300-0632
dc.identifier.other1303-6203
dc.identifier.scopus2-s2.0-84978238268
dc.identifier.urihttps://doi.org/10.3906/elk-1409-137
dc.identifier.urihttps://hdl.handle.net/11413/2208
dc.identifier.wos378097800030
dc.language.isoen
dc.publisherTUBİTAK Scientific & Technical Research Council Turkey, Ataturk Bulvarı No 221, Kavaklıdere, Ankara, 00000, Turkey
dc.relationTurkish Journal of Electrical Engineering and Computer Sciencestr_TR
dc.subjectMetrics valuestr_TR
dc.subjectdefect predictiontr_TR
dc.subjectcross-company datatr_TR
dc.subjectRoc Curvestr_TR
dc.subjectClassificationtr_TR
dc.subjectModulestr_TR
dc.subjectMetricstr_TR
dc.titleThe use of cross-company fault data for the software fault prediction problemtr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
The use of cross-company fault data for the software fault prediction problem.pdf
Size:
87.22 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: