Publication: The use of cross-company fault data for the software fault prediction problem
dc.contributor.author | Çatal, Çağatay | |
dc.contributor.authorID | 108363 | tr_TR |
dc.date.accessioned | 2018-07-19T13:07:44Z | |
dc.date.available | 2018-07-19T13:07:44Z | |
dc.date.issued | 2016 | |
dc.description.abstract | We investigated how to use cross-company (CC) data in software fault prediction and in predicting the fault labels of software modules when there are not enough fault data. This paper involves case studies of NASA projects that can be accessed from the PROMISE repository. Case studies show that CC data help build high-performance fault predictors in the absence of fault labels and remarkable results are achieved. We suggest that companies use CC data if they do not have any historical fault data when they decide to build their fault prediction models. | tr_TR |
dc.identifier.issn | 1300-0632 | |
dc.identifier.other | 1303-6203 | |
dc.identifier.scopus | 2-s2.0-84978238268 | |
dc.identifier.uri | https://doi.org/10.3906/elk-1409-137 | |
dc.identifier.uri | https://hdl.handle.net/11413/2208 | |
dc.identifier.wos | 378097800030 | |
dc.language.iso | en | |
dc.publisher | TUBİTAK Scientific & Technical Research Council Turkey, Ataturk Bulvarı No 221, Kavaklıdere, Ankara, 00000, Turkey | |
dc.relation | Turkish Journal of Electrical Engineering and Computer Sciences | tr_TR |
dc.subject | Metrics values | tr_TR |
dc.subject | defect prediction | tr_TR |
dc.subject | cross-company data | tr_TR |
dc.subject | Roc Curves | tr_TR |
dc.subject | Classification | tr_TR |
dc.subject | Modules | tr_TR |
dc.subject | Metrics | tr_TR |
dc.title | The use of cross-company fault data for the software fault prediction problem | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | WOS | |
local.indexed.at | Scopus |
Files
Original bundle
1 - 1 of 1
- Name:
- The use of cross-company fault data for the software fault prediction problem.pdf
- Size:
- 87.22 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: