Publication: Quasiconformal Harmonic Mappings Related to Janowski Alpha-Spirallike Functions
dc.contributor.author | Aydoğan, Melike | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | 199370 | tr_TR |
dc.contributor.authorID | 35549 | tr_TR |
dc.date.accessioned | 2018-07-13T13:09:39Z | |
dc.date.available | 2018-07-13T13:09:39Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Let f = h(z) + g(z) be a univalent sense-preserving harmonic mapping of the open unit disc D = {z/vertical bar z vertical bar < 1}. If f satisfies the condition vertical bar omega(z)vertical bar = vertical bar g'(z)/h'(z)vertical bar < k, 0 < k < 1 the f is called k-quasiconformal harmonic mapping in D. In the present paper we will give some properties of the class of k-quasiconformal mappings related to Janowski alpha-spirallike functions. | tr_TR |
dc.description.sponsorship | Sch Math Sci; Malaysian Math Sci Soc; Amer Inst Phys | tr_TR |
dc.identifier.isbn | 978-0-7354-1236-1 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.scopus | 2-s2.0-84904126102 | |
dc.identifier.uri | https://doi.org/10.1063/1.4882574 | |
dc.identifier.uri | https://hdl.handle.net/11413/2086 | |
dc.identifier.wos | 341876500117 | |
dc.language.iso | en | |
dc.publisher | Amer Inst Physics, 2 Huntington Quadrangle, Ste 1No1, Melville, Ny 11747-4501 Usa | |
dc.relation | Proceedings Of The 3rd International Conference On Mathematical Sciences | tr_TR |
dc.subject | k-quasiconformal mapping | tr_TR |
dc.subject | Distortion theorem | tr_TR |
dc.subject | Growth theorem | tr_TR |
dc.subject | Coefficient inequality | tr_TR |
dc.title | Quasiconformal Harmonic Mappings Related to Janowski Alpha-Spirallike Functions | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | WOS | |
local.indexed.at | Scopus | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 82125b62-3d7a-489a-8c3f-a104e98d346e |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: