Publication:
On Group Analysis of Optimal Control Problems in Economic Growth Models

dc.contributor.authorPOLAT, GÜLDEN GÜN
dc.contributor.authorÖzer, Teoman
dc.date.accessioned2022-11-30T08:44:27Z
dc.date.available2022-11-30T08:44:27Z
dc.date.issued2020
dc.description.abstractThe optimal control problems in economic growth theory are analyzed by considering the Pontryagin's maximum principle for both current and present value Hamiltonian functions based on the theory of Lie groups. As a result of these necessary conditions, two coupled first-order differential equations are obtained for two different economic growth models. The first integrals and the analytical solutions (closed-form solutions) of two different economic growth models are analyzed via the group theory including Lie point symmetries, Jacobi last multiplier, Prelle-Singer method,_-symmetry and the mathematical relations among them.en
dc.identifier13
dc.identifier.citationPolat, G. G., & Özer, T. (2020). On group analysis of optimal control problems in economic growth models. Discrete & Continuous Dynamical Systems-S, 13(10), 2853-2876.
dc.identifier.issn19371632
dc.identifier.scopus2-s2.0-85088250829
dc.identifier.urihttps://doi.org/10.3934/dcdss.2020215
dc.identifier.urihttps://hdl.handle.net/11413/7995
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.journalDiscrete and Continuous Dynamical Systems - Series S
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLie Point Symmetries
dc.subjectJacobi Last Multipliers
dc.subjectOptimal Control
dc.subjectΛ-symmetries
dc.subjectClosed-form Solutions
dc.titleOn Group Analysis of Optimal Control Problems in Economic Growth Modelsen
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.journal.endpage2876
local.journal.issue10
local.journal.startpage2853
relation.isAuthorOfPublication7c7ba2b6-9403-4400-807a-c1840de2a55d
relation.isAuthorOfPublication.latestForDiscovery7c7ba2b6-9403-4400-807a-c1840de2a55d

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: