Publication:
Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (‑1415 T>C) gene polymorphisms with calcium oxalate stone disease

No Thumbnail Available

Date

2013

Authors

Çoker Gürkan, Ajda
Arısan, Serdar
Ünsal, Zeynep Narçin

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L‑ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single‑nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (‑1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT‑1 promoter region (‑1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)‑based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT‑1 (‑1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT‑1 ‑1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT‑1 ‑1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT‑1 ‑1415 T>C gene polymorphisms might not be a risk factor for urolithiasis.

Description

Keywords

Citation