Publication:
Statistical Forward Continuity in Asymmetric Metric Spaces

dc.contributor.authorDAĞCI, FİKRİYE İNCE
dc.date.accessioned2025-09-26T07:30:44Z
dc.date.issued2025
dc.descriptionConference name; 8th International Conference of Mathematical Sciences, ICMS 2024.
dc.description.abstractA sequence (xm) of points in an asymmetric metric space X is called statistically forward convergent to a point L of X if limn→∞1n|{m≤n:d(L,xm)≥ϵ}|=0 and is called quasi Cauchy if limn→∞1n|{m≤n:d(L,xm+1)≥ϵ}|=0 for each positive ϵ, where |A| indicates the cardinality of the set A. We prove that a subset E of X is forward totally bounded if and only if any sequence of points in E has a statistically forward quasi Cauchy subsequence. We also introduce and investigate statistically upward continuity in the sense that a function defined on X into Y is called statistically upward continuous if it preserves statistically forward quasi Cauchy sequences, i.e. (f (xm)) is statistically forward quasi Cauchy whenever (xm) is. © 2025 Author(s).en
dc.identifier3431
dc.identifier.citationFikriye Ince Dagci; Statistical forward continuity in asymmetric metric spaces. AIP Conf. Proc. 4 August 2025; 3431 (1): 030004.
dc.identifier.issn0094243X
dc.identifier.scopus2-s2.0-105013334385
dc.identifier.urihttps://doi.org/10.1063/5.0290220
dc.identifier.urihttps://hdl.handle.net/11413/9672
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.relation.journalAIP Conference Proceedings
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleStatistical Forward Continuity in Asymmetric Metric Spaces
dc.title.alternative8th International Conference of Mathematical Sciences
dc.typeconferenceObject
dspace.entity.typePublication
local.indexed.atScopus
local.journal.issue1

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.81 KB
Format:
Item-specific license agreed upon to submission
Description: