Publication:
Weakly Compact-Friendly Operators

dc.contributor.authorÇağlar, Mert
dc.contributor.authorMısırlıoğlu, Remzi Tunç
dc.contributor.authorIDTR108339tr_TR
dc.contributor.authorIDTR108824tr_TR
dc.date.accessioned2016-05-09T08:44:36Z
dc.date.available2016-05-09T08:44:36Z
dc.date.issued2009
dc.description.abstractWe introduce weak compact-friendliness as an extension of compact-friendliness, and and prove that if a non-zero weakly compact-friendly operator B: E→ E on a Banach lattice is quasi-nilpotent at some non-zero positive vector, then B has a non-trivial closed invariant ideal. Relevant facts related to compact-friendliness are also discussed.tr_TR
dc.identifier.issn1683-3414
dc.identifier.urihttp://hdl.handle.net/11413/1289
dc.language.isoen_UStr_TR
dc.publisherInstitution Of Russian Academy Of Sciences South Mathematical İnstitute Of Vladikavkaz Scientific Center Of The Russian Academy Of Sciences And The Government Of Republic Of North Ossetia-Alania, 22, Markusa Street, Vladikavkaz, 362027tr_TR
dc.relationVladikavkazskii Matematicheskii Zhurnaltr_TR
dc.subjectInvariant subspacetr_TR
dc.subjectpositive operatortr_TR
dc.subjectweakly compact-friendlytr_TR
dc.subjectlocally quasi-nilpotenttr_TR
dc.subjectDeğişmeyen alt uzaytr_TR
dc.subjectpozitif operatörtr_TR
dc.subjectzayıf kompakt dostutr_TR
dc.subjectlokal yarı-nilpotenttr_TR
dc.titleWeakly Compact-Friendly Operatorstr_TR
dc.typeArticletr_TR
dspace.entity.typePublication

Files