Scopus İndeksli Yayınlar / Scopus Indexed Publications
Permanent URI for this collectionhttps://hdl.handle.net/11413/6358
Browse
Browsing Scopus İndeksli Yayınlar / Scopus Indexed Publications by Publisher "Amer Chemical Soc, 1155 16th St, Nw, Washington, Dc 20036 USA"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Metadata only 5-Methylhydantoin: from isolated molecules in a low-temperature argon matrix to solid state polymorphs characterization(Amer Chemical Soc, 1155 16th St, Nw, Washington, Dc 20036 USA, 2017-07-20) Nogueira, Bernardo A.; Canotilho, J.; Eusebio, M. E. S.; Henriques, M. S. C.; Paixao, J. A.; Fausto, Rui; ILDIZ, GÜLCE ÖĞRÜÇ; 107326The molecular structure, vibrational spectra and photochemistry of 5-methylhydantoin (C4H6N2O2; 5-MH) were studied by matrix isolation infrared spectroscopy and theoretical calculations at the DFT(B3LYP)/6-311++G(d,p) theory level. The natural bond orbital (NBO) analysis approach was used to study in detail the electronic structure of the minimum energy structure of 5-MH, namely the specific characteristics of the sigma and pi electronic systems of the molecule and the stabilizing orbital interactions. UV irradiation of 5-MH isolated in argon matrix resulted in its photofragmentation through a single photochemical pathway, yielding isocyanic acid, ethanimine, and carbon monoxide, thus following a pattern already observed before for the parent hydantoin and 1-methylhydantoin molecules. The investigation of the thermal properties of 5-MH was undertaken by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM) and Raman spectroscopy. Four different polymorphs of 5-MH were identified. The crystal structure of one of the polymorphs, for which it was possible to grow up suitable crystals, was determined by X-ray diffraction (XRD). Two of the additional polymorphs were characterized by powder XRD, which confirmed the molecules pack in different crystallographic arrangements.Publication Embargo New approach for thickness determination of solution-deposited graphene thin films(Amer Chemical Soc, 1155 16th St, Nw, Washington, Dc 20036 USA, 2017-06) Jussila, Henri; Albrow Owen, Tom; Yang, He; Hu, Guohua; Granqvist, Niko; Lipsanen, Harri; Howe, Richard C. T.; Sun, Zhipei; Hasan, Tawfique; AKŞİMŞEK, HÜSEYİN SİNAN; 107154Solution processing-based fabrication techniques such as liquid phase exfoliation may enable economically feasible utilization of graphene and related nanomaterials in real-world devices in the near future. However, measurement of the thickness of the thin film structures fabricated by these approaches remains a significant challenge. By using surface plasmon resonance (SPR), a simple, accurate, and quick measurement of the deposited thickness for inkjet-printed graphene thin films is reported here. We show that the SPR technique is convenient and well-suited for the measurement of thin films formulated from nanomaterial inks, even at sub-10 nm thickness. We also demonstrate that the analysis required to obtain results from the SPR measurements is significantly reduced compared to that required for atomic force microscopy (AFM) or stylus profilometer, and much less open to interpretation. The gathered data implies that the film thickness increases linearly with increasing number of printing repetitions. In addition, SPR also reveals the complex refractive index of the printed thin films composed of exfoliated graphene flakes, providing a more rigorous explanation of the optical absorption than that provided by a combination of AFM/profilometer and the extinction coefficient of mechanically exfoliated graphene flakes. Our results suggest that the SPR method may provide a new pathway for the thickness measurement of thin films fabricated from any nanomaterial containing inks.