Browsing by Author "Akkaya, Y."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Restricted The Effects of Conformation and Intermolecular Hydrogen Bonding on the Structure and IR Spectra of Flutamide; A Study Based on the Matrix Isolation Technique, Ab Initio and DFT Calculations(Pergamon-Elsevier Science Ltd., 2023) Arman, C.; Balcı, K.; Akkaya, Y.; AKYÜZ, SEVİM; Reaves-Mckee, T.; Frankamp, AH; Coates, JT; Collier, WB; Ritzhaupt, G.; Klehm, CE; Desman, P.In this study, stable conformers of flutamide referred to as an anticancer drug were searched through a relaxed potential energy surface scan carried out at the B3LYP/6-31G(d) level of theory. This was followed by geometry optimization and thermochemistry calculations performed with the HF-SCF, MP2, B3LYP methods and the 6-31G (d), 6-311++G(d,p), aug-cc-pvTZ basis sets for each of the determined minimum energy conformers. The results revealed that flutamide has at least five stable conformers and two of them provide the major contribution to the observed matrix isolation infrared (IR) spectra of the molecule. The effects of conformational variety and intermolecular hydrogen bonding interactions on the observed IR spectra of flutamide were interpreted in the light of the vibrational spectral data obtained for the most stable monomer and dimer forms of the molecule at the same levels of theory. Pulay's "Scaled Quantum Mechanical-Force Field (SQM-FF)" method was used in the refinement of the calculated harmonic wavenumbers, IR intensities and potential energy distributions. This scaling method which proved its superiority to both anharmonic frequency calculations and other scaling methods helped us to correctly interpret the remarkable differences between the matrix IR spectra of flutamide in argon and the condensed phase IR spectra of the molecule in solvents such as KBr, H2O, D2O, ethanol and methanol.Publication Restricted An Investigation on the Structure and Group Vibrations of Balenine Molecule by Matrix Isolation IR Spectroscopy, DFT and MP2 Based Calculations(Pergamon-Elsevier Science Ltd., 2022) Balcı, K.; Akkaya, Y.; Arman, C.; Gören, Y.; AKYÜZ, SEVİM; Hacker, AL; Van Vleet, HJ; Ritzhaupt, G.; Collier, W. B.Stable conformers of neutral balenine were scanned through molecular dynamics simulations and energy minimizations using Allinger's MM2 force field. For each of the found minimum-energy conformers, geometry optimization and thermochemistry calculations were performed by using B3LYP, MP2, G3MP2B3 methods, 6-31G(d), 6-311++G(d,p) and aug-cc-pvTZ basis sets. The calculation results have indicated that balenine has about twenty stable conformers whose relative energies are in the range of 0-9.5 kcal/mol. Three of these are thought to provide the major contribution to matrix isolation IR spectra of the molecule. Our solvent calculations using the polarized continuum model revealed the stable zwitterion structures which are predicted to dominate IR spectra of balenine in water and heavy water (D2O) solvents. Pulay's SQM-FF method was used in scaling of the harmonic force constants and vibrational spectral data calculated for the neutral and zwitterion structures. These refined calculation data together with those obtained from anharmonic frequency calculations enabled us to correctly interpret the matrix isolation IR spectrum of balenine and the tautomerism-based changes observed in its KBr IR and solution (D2O) IR spectra. The results revealed the crucial role of conformation and zwitterionic tautomerism on the structure and vibrational spectral data of the molecule.