• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik - Elektronik Mühendisliği / Electrical-Electronic Engineering
  • Makaleler / Articles
  • View Item
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik - Elektronik Mühendisliği / Electrical-Electronic Engineering
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graphene-MoS2-Metal Hybrid Structures for Plasmonic Biosensors

Thumbnail
Author
Akşimşek, Hüseyin Sinan
Jussila, Henri
Sun, Zhipei
Type
Article
Date
2018-12-01
Language
en_US
Metadata
Show full item record
Abstract
Surface Plasmon Resonance (SPR) biosensors are widely used for real-time label-free detection in medical diagnostics, pharmaceutical researches and food safety. Although there is a growing interest in miniaturization of biosensors for self-detection and diagnostics at out of laboratory, the performance of conventional metal SPR sensors is still limited. In this paper, we propose graphene–MoS 2 – metal hybrid structures based plasmon sensors under the best minimum light intensity approach, which represents the performance analysis in case of the lowest reflected light strength. It is demonstrated that the metal thickness can be reduced from 55 nm to 32 nm and 37 nm meanwhile the performance of the background sensor can be improved by 87% and 13% with the 4 additional MoS2 and graphene layers, respectively. We show that MoS2 based SPR devices provide much better sensitivity performance than graphene based devices. Our results reveal the another promising property of MoS2: The sensitivity of SPR sensors can be greatly increased with a few number of MoS2 within the angular SPR system while reducing the size of the device, especially for particular applications such as detecting a single molecule and biosensing at low biomolecule concentration. Furthermore, we show that the equivalent optical properties of multilayered nanostructures also depend on the layer thickness which is a novel knowledge for the next studies on 2D material based SPR plasmonic devices.
Subject
Nanomaterials
Surface plasmons
Multilayers
Mathematical methods in optics
Biological sensing and sensors
URI
https://doi.org/10.1016/j.optcom.2018.07.075
https://hdl.handle.net/11413/3016
Collections
  • Makaleler / Articles [71]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS