• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Endüstri Mühendisliği / Industrial Engineering
  • Makaleler / Articles
  • View Item
  •   Home
  • Mühendislik Fakültesi / Faculty of Engineering
  • Endüstri Mühendisliği / Industrial Engineering
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Os doped YMnO3 multiferroic: A study investigating the electrical properties through tuning the doping level

Thumbnail
Author
Polat, Özgür
Coşkun, Merve
Durmuş, Zehra
Çağlar, Müjdat
Turut, Abdulmecit
Type
Article
Date
2018-07-05
Language
en_US
Metadata
Show full item record
Abstract
Previously, it has been demonstrated the electrical and magnetic properties of YMnO3 (YMO) can be tuned with substitution of different elements into Y and/or Mn sites. In this study, the electrical properties of YMO were explored via substituting osmium (Os) into Mn site with various mol %. The crystalline morphology of synthesized YMnO3 and YMn1-xOsxO3 (YMOO) (x = 0.01, 0.05, 0.10) powders were characterized with X-ray diffractometer (XRD) and infrared spectroscopy (IR) measurements. The crystalline morphology of synthesized powders was studied via scanning electron microscope (SEM). Oxidation states of constituent elements have been examined by X-ray photoelectron spectroscopy (XPS). Electrical properties of YMO and YMOO powders were investigated by dielectric/impedance spectrometer at various temperatures and frequencies. Electric modulus measurements unveiled that for each of x = 0, 0.01 and 0.05 samples there are three relaxation peaks while x = 0.10 sample shows four relaxation peaks. It has been shown that dielectric constant and conductivity properties of parent YMO can be enhanced via Os substitution, particularly, 10 mol % Os doped sample has the highest dielectric constant and conductivity at various temperatures and frequency regions. Moreover, the conduction mechanisms were also examined. It turned out that in order to explain conduction mechanism, multiple models need to be considered in the studied materials. (C) 2018 Elsevier B.V. All rights reserved.
Subject
YMnO3
Os doping
Relaxation
Dielectric constant
Conductivity
Ray Photoelectron-Spectroscopy
Dielectric-Properties
Ac Conductivity
Absorption-Spectroscopy
Bismuth Ferrite
Thin-Films
Relaxation
Substitution
Behavior
Manganites
URI
https://doi.org/10.1016/j.jallcom.2018.04.200
https://hdl.handle.net/11413/2290
Collections
  • Makaleler / Articles [70]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS