• Home
  • About
  • Policies
  • Contact
    • Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Advanced Search
View Item 
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Fizik / Physics
  • Makaleler / Articles
  • View Item
  •   Home
  • Fen Edebiyat Fakültesi / Faculty of Letters and Sciences
  • Fizik / Physics
  • Makaleler / Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Effect Of Activity-Related Meridional Flow Modulation On The Strength Of The Solar Polar Magnetic Field

Thumbnail
View/Open
The Effect Of Activity-Related Meridional Flow Modulation On The Strength Of The Solar Polar Magnetic Field.pdf (565.8Kb)
Author
Jiang, J.
Işık, Emre
Cameron, R. H.
Schmitt, D.
Schuessler, M.
Type
Article
Date
2010-07-01
Language
en_US
Metadata
Show full item record
Abstract
We studied the effect of the perturbation of the meridional flowin the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is to reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.
Subject
Sun: activity
Sun: helioseismology
Sun: surface magnetism
flux transport
subsurface flows
cycle variation
sunspot cycle
sun
evolution
dynamics
surface
regions
model
Güneş: etkinlik
Güneş: heliosismoloji
Güneş: Yüzey manyetizma
yeraltı akışları
döngüsü varyasyon
güneş lekesi döngüsü
Güneş
evrim
dinamik
yüzey
bölgeler
model
URI
http://hdl.handle.net/11413/1302
Collections
  • Makaleler / Articles [293]
  • Scopus Publications [724]
  • WoS Publications [1016]

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS

İKU Kütüphane


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoSThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageBy PublisherRightsPubmedScopusWoS

My Account

Login

İstanbul Kültür University

Hakkında |Politika | Kütüphane | İletişim | Send Feedback | Admin

Istanbul Kültür University, Ataköy Campus E5 Karayolu Üzeri Bakırköy 34158, İstanbul / TURKEY
Copyright © İstanbul Kültür University

Creative Commons Lisansı
IKU Institutional Repository, Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Designed by  UNIREPOS