Browsing by Author "Ramos, M. Luisa"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Open Access Indigo Carmine Binding to Cu(II) in Aqueous Solution and Solid State: Full Structural Characterization Using NMR, FTIR and UV/Vis Spectroscopies and DFT Calculations(MDPI, 2024) Braz, Sofia; Justino, Licinia L. G.; Ramos, M. Luisa; FAUSTO, RUIThe food industry uses indigo carmine (IC) extensively as a blue colorant to make processed food for young children and the general population more attractive. Given that IC can act as a ligand, this raises concerns about its interactions with essential metal ions in the human body. In view of this interest, in the present investigation, the copper(II)/indigo carmine system was thoroughly investigated in aqueous solution and in the solid state, and the detailed structural characterization of the complexes formed between copper(II) and the ligand was performed using spectroscopic methods, complemented with DFT and TD-DFT calculations. NMR and UV/Vis absorption spectroscopy studies of the ligand in the presence of copper(II) show changes that clearly reveal strong complexation. The results point to the formation of complexes of 1:1, 1:2 and 2:1 Cu(II)/IC stoichiometry in aqueous solution, favored in the pH range 6-10 and stable over time. DFT calculations indicate that the coordination of the ligand to the metal occurs through the adjacent carbonyl and amine groups and that the 1:1 and the 2:1 complexes have distorted tetrahedral metal centers, while the 1:2 structure is five-coordinate with a square pyramidal geometry. FTIR results, together with EDS data and DFT calculations, established that the complex obtained in the solid state likely consists of a polymeric arrangement involving repetition of the 1:2 complex unit. These results are relevant in the context of the study of the toxicity of IC and provide crucial data for future studies of its physiological effects. Although the general population does not normally exceed the maximum recommended daily intake, young children are highly exposed to products containing IC and can easily exceed the recommended dose. It is, therefore, extremely important to understand the interactions between the dye and the various metal ions present in the human body, copper(II) being one of the most relevant due to its essential nature and, as shown in this article, the high stability of the complexes it forms with IC at physiological pH.Publication Restricted Molecular Structure, Spectroscopy and Photochemistry of Alprazolam(Elsevier, 2022) ILDIZ, GÜLCE ÖĞRÜÇ; Tabanez, Andreia M.; Nunes, Antonio; Roque, Jose P. L.; Justino, Licinia L. G.; Ramos, M. Luisa; Fausto, RuiIn this article, a comprehensive study of the molecular structure, spectroscopy, and photochemistry of alprazolam (Xanax (R); 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine) is reported. The structure of the isolated molecule of the compound was investigated using density functional theory (DFT), revealing that the molecule exists in a single conformer, which is associated with 12 equivalent-by symmetry minima. The molecules of the compound were trapped from the gas phase into a low temperature (10 K) argon matrix, and the infrared (IR) spectrum of the matrix-isolated monomers was obtained and assigned. The matrix-isolated molecules were then subjected to in situ ultraviolet (UV) irradiation . It was concluded that alprazolam is photostable under these experimental conditions, contrarily to what is known to happen for the compound in solution or in solid state in the presence of excipients used in the pharmaceutical formulations. An explanation for the photostability of the matrix-isolated compound is provided, based on rapid recombinations of the biradical formed from the UV-induced diazepine ring cleavage or the chlorine atom and the complementary radical resulting from the scissoring of the C-Cl bond, which are favored by the cage confinement of the matrix-isolated molecules. The major fragmentation channels of the alprazolam molecule upon electron bombardment (70 eV) were determined by analysis of its electron ionization mass spectrum, which reveals that the major primary fragmentation processes lead to formation of cyanobenzene, N-2 , HCl (Cl-2), and benzene. The compound was also investigated in solution by multinuclear (H-1, C-13 and N-15) nuclear magnetic resonance (NMR) and ultraviolet (UV) spectroscopies, and in crystalline phase (P-1 polymorph) through IR and Raman spectroscopies. In addition, the structure of the crystal, previously reported in the literature [M. R. Caira, B. Easter, S. Honiball, A. Horne and L. R. Nassimbeni, Structure and Thermal Stability of Alprazolam and Selected Solvates, J. Pharm. Sci., 1995 , 84 , 1379-1384], was revisited in order to evaluate the relative importance of the different types of intermolecular interactions , using Hirshfeld surface analysis, the CE-B3LYP energy decomposition model, and the harmonic oscillator model of aromaticity (HOMA) index. Finally, the enthalpy of sublimation of the crystal was estimated from the CE-B3LYP calculated lattice energy.