Show simple item record

dc.contributor.authorÖzer, Mehmet
dc.contributor.authorHacıbekiroglou, Gürsel
dc.contributor.authorValaristos, Antonios
dc.contributor.authorMiliou, Amalia N.
dc.contributor.authorPolatoğlu, Yaşar
dc.contributor.authorAnagnostopoulos, Antonios N.
dc.contributor.authorCenys, Antanas
dc.date.accessioned2014-08-14T08:03:39Z
dc.date.available2014-08-14T08:03:39Z
dc.date.issued2006-12
dc.identifier.issn1303-2739
dc.identifier.urihttp://hdl.handle.net/11413/430
dc.description.abstractIn the present report the dynamic behaviour of the one dimensional family of maps f(x) = b(x + ar}' is examined, for representative values of the control parametres a, b and A.. These maps are of special interest, since theyare solutions of N;j = 2 , where N;j is the Relaxed Newton's method derivative. The maps f(x) are proved to be solutions of the non-linear df(x) fJ[.r/..I](1+A)/A fJ 1 b-1/A differential equation, dx - '. J \Xi , where = /l. •. The reccurent form of these maps, Xn = b(xn_i + arA, after excessive iterations, shows in a Xn vs. A. plot, an initial exponential decay followed by a bifurcation. The value ofA. at which this bifurcation takes place, depends on the values of the parameters a, b. This corresponds to a switch to an oscillatory behaviour with amplitudes of f (X) undergoing a period doubling. For values of a slightly higher than i and at higher A.'s areverse bifurcation occurs and a bleb is formed. This behaviour is confirrned by calculating the corresponding Lyapunov exponent.en
dc.language.isoentr_TR
dc.publisherİstanbul Kültür Üniversitesi Yayınlarıtr_TR
dc.subjectdynamicstr_TR
dc.subjectNewton's methodtr_TR
dc.subjectderivativetr_TR
dc.subjectdinamiklertr_TR
dc.subjectNewton yöntemitr_TR
dc.subjecttürevtr_TR
dc.titleDynamics On Relaxed Newton's Method Derivativetr_TR
dc.typeArticletr_TR
dc.contributor.authorIDTR2509tr_TR
dc.contributor.authorIDTR199370tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record