Publication:
A novel approach to cutting decision trees

dc.contributor.authorYÜKSEKTEPE, FADİME ÜNEY
dc.contributor.authorID108243tr_TR
dc.date.accessioned2018-07-26T07:24:40Z
dc.date.available2018-07-26T07:24:40Z
dc.date.issued2014-09
dc.description.abstractIn data mining, binary classification has a wide range of applications. Cutting Decision Tree (CDT) induction is an efficient mathematical programming based method that tries to discretize the data set on hand by using multiple separating hyperplanes. A new improvement to CDT model is proposed in this study by incorporating the second goal of maximizing the distance of the correctly classified instances to the misclassification region. Computational results show that developed model achieves better classification accuracy for Wisconsin Breast Cancer database and Japanese Banks data set when compared to existing piecewise-linear models in literature. Furthermore, remarkable results are obtained for the well-known benchmarking data sets (Buba Liver Disorders, Blood Tranfusion and Pima Indian Diabetes) when compared to the original CDT model.tr_TR
dc.identifier.issn1435-246X
dc.identifier.scopus2-s2.0-84904416873
dc.identifier.scopus2-s2.0-84904416873en
dc.identifier.urihttps://doi.org/10.1007/s10100-013-0312-9
dc.identifier.urihttps://hdl.handle.net/11413/2353
dc.identifier.wos339375000007
dc.identifier.wos339375000007en
dc.language.isoen_UStr_TR
dc.publisherSpringer, 233 Spring Street, New York, Ny 10013, United Statestr_TR
dc.relationCentral European Journal Of Operations Researchtr_TR
dc.subjectDiscriminant analysistr_TR
dc.subjectMathematical programmingtr_TR
dc.subjectData miningtr_TR
dc.subjectDecision treestr_TR
dc.subjectPiecewise-linear modelstr_TR
dc.subjectMathematical-Programming Modelstr_TR
dc.subjectLinear Discriminant-Analysistr_TR
dc.subjectClassification Problemtr_TR
dc.titleA novel approach to cutting decision treestr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atscopus
local.indexed.atwos
relation.isAuthorOfPublicationb6644414-b066-4782-a746-0c6b54c21f05
relation.isAuthorOfPublication.latestForDiscoveryb6644414-b066-4782-a746-0c6b54c21f05

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: