Publication:
Lung model parameter estimation by unscented Kalman filter

dc.contributor.authorAkan, Aydın
dc.contributor.authorSAATÇI, ESRA
dc.contributor.authorIDTR2918tr_TR
dc.contributor.authorIDTR112197tr_TR
dc.date.accessioned2016-04-22T12:39:20Z
dc.date.available2016-04-22T12:39:20Z
dc.date.issued2007
dc.description.abstractDynamic nonlinear models are the best choice to analyze respiratory systems and to describe system mechanics. In this work, Unscented Kalman Filtering (UKF) was used to estimate the dynamic nonlinear model parameters of the lung model by using the measured airway flow, mask pressure and integrated lung volume. Artificially generated data and the data from Chronic Obstructive Pulmonary Diseased (COPD) patients were analyzed by the proposed model and the proposed UKF algorithm. Simulation results for both cases demonstrated that UKF is a promising estimation method for the respiratory system analysis.tr_TR
dc.identifier.pubmed18002516
dc.identifier.pubmed18002516en
dc.identifier.scopus2-s2.0-57649165216
dc.identifier.scopus2-s2.0-57649165216en
dc.identifier.urihttp://hdl.handle.net/11413/1110
dc.identifier.wos253467002007
dc.identifier.wos253467002007en
dc.language.isoen_UStr_TR
dc.publisherIEEE, 345 E 47TH ST, NEW YORK, NY 10017 USAtr_TR
dc.relation2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16tr_TR
dc.subjectnonlinear modeltr_TR
dc.subjectventilationtr_TR
dc.subjectdoğrusal olmayan modeltr_TR
dc.subjecthavalandırmatr_TR
dc.titleLung model parameter estimation by unscented Kalman filtertr_TR
dc.typeArticle
dspace.entity.typePublication
local.indexed.atpubmed
local.indexed.atscopus
local.indexed.atwos
relation.isAuthorOfPublication4ea2111e-03d0-4752-b669-381c65df2e4d
relation.isAuthorOfPublication.latestForDiscovery4ea2111e-03d0-4752-b669-381c65df2e4d

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: