Publication: Lung model parameter estimation by unscented Kalman filter
dc.contributor.author | Akan, Aydın | |
dc.contributor.author | SAATÇI, ESRA | |
dc.contributor.authorID | TR2918 | tr_TR |
dc.contributor.authorID | TR112197 | tr_TR |
dc.date.accessioned | 2016-04-22T12:39:20Z | |
dc.date.available | 2016-04-22T12:39:20Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Dynamic nonlinear models are the best choice to analyze respiratory systems and to describe system mechanics. In this work, Unscented Kalman Filtering (UKF) was used to estimate the dynamic nonlinear model parameters of the lung model by using the measured airway flow, mask pressure and integrated lung volume. Artificially generated data and the data from Chronic Obstructive Pulmonary Diseased (COPD) patients were analyzed by the proposed model and the proposed UKF algorithm. Simulation results for both cases demonstrated that UKF is a promising estimation method for the respiratory system analysis. | tr_TR |
dc.identifier.pubmed | 18002516 | |
dc.identifier.pubmed | 18002516 | en |
dc.identifier.scopus | 2-s2.0-57649165216 | |
dc.identifier.scopus | 2-s2.0-57649165216 | en |
dc.identifier.uri | http://hdl.handle.net/11413/1110 | |
dc.identifier.wos | 253467002007 | |
dc.identifier.wos | 253467002007 | en |
dc.language.iso | en_US | tr_TR |
dc.publisher | IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA | tr_TR |
dc.relation | 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16 | tr_TR |
dc.subject | nonlinear model | tr_TR |
dc.subject | ventilation | tr_TR |
dc.subject | doğrusal olmayan model | tr_TR |
dc.subject | havalandırma | tr_TR |
dc.title | Lung model parameter estimation by unscented Kalman filter | tr_TR |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | pubmed | |
local.indexed.at | scopus | |
local.indexed.at | wos | |
relation.isAuthorOfPublication | 4ea2111e-03d0-4752-b669-381c65df2e4d | |
relation.isAuthorOfPublication.latestForDiscovery | 4ea2111e-03d0-4752-b669-381c65df2e4d |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: