Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Permanent URI for this collectionhttps://hdl.handle.net/11413/6819
Browse
Browsing Endüstri Mühendisliği Bölümü / Department of Industrial Engineering by Publisher "Institute of Electrical and Electronics Engineers Inc."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Restricted Forecasting of Turkey's Total Electricity Consumption in Sectoral Bases Using Machine Learning Algorithms(Institute of Electrical and Electronics Engineers Inc., 2022) HAJJAR, MHD KHAIR; ÜLKÜ, İLAYDAElectrical energy is a milestone in the economic growth of each country. This study forecasts the sectoral and total electricity consumption in Turkey until the year 2050. This study, utilize two distinct time series forecasting methods namely Multilayer Perceptron (MLP) and Sequential Minimal Optimization (SMO) as a model to generate the forecasting formulas. The sectoral and total electricity consumption for Turkey from the year 1970 to 2020 was obtained from the Turkish Statistical Institute and fed to the models to forecast the upcoming years. The two models were evaluated and compared using determination coefficient R2 and mean absolute percentage error MAPE. It is found that MLP performed better in forecasting the commercial, governmental, illumination and other sectors and SMO performed better in forecasting the industrial and household sectors alongside the total electricity consumption. © 2022 IEEE.Publication Restricted Global Impact of the Pandemic on Education: A Study of Natural Language Processing(Institute of Electrical and Electronics Engineers Inc., 2022) AYAZ, TEOMAN BERKAY; USLU, MUHAMMED SAFA; AĞCABAY, İBRAHİM; AHMED, FARUK; KORKMAZ, ÖMER FARUK; KÜREKSİZ, MESUT; ULUÇAM, EMRE; YILDIRIM, ELİF; KOCAÇINAR, BÜŞRA; AKBULUT, FATMA PATLARSchool closures due to the Covid-19 pandemic have changed education forever and we have witnessed the rise of online learning platforms. The education units of the countries made great efforts to adapt to this new order. The expanding, quick spread of the virus and careful steps have prompted the quest for reasonable choices for continuing education to guarantee students get appropriate education and are not impacted logically or mentally. Different methods were attempted to understand how students were affected by this big change. In addition to the significance of traditional surveys and consulting services, the utilization of social media analysis is used as a supportive approach. This paper analyzes the feedback of students on social media via tweets. Deep sentiment analysis is employed to identify embedded emotions such as negative, neutral, and positive. We also aimed to classify irrelevant tweets as the fourth category. Our experiments showed that the tweets are mostly biased toward negative emotions. © 2022 IEEE.