Browsing by Author "TOKMAK, AHMET VEDAT"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Open Access Boosting the Visibility of Services in Microservice Architecture(Springer, 2023) TOKMAK, AHMET VEDAT; AKBULUT, AKHAN; Çatal, ÇağatayMonolithic software architectures are no longer sufficient for the highly complex software-intensive systems, which modern society depends on. Service Oriented Architecture (SOA) surpassed monolithic architecture due to its reusability, platform independency, ease of maintenance, and scalability. Recent SOA implementations made use of cloud-native architectural approaches such as microservice architecture, which has resulted in a new challenge: the discovery difficulties of services. One way to dynamically discover and route traffic to service instances is to use a service discovery tool to locate the Internet Protocol (IP) address and port number of a microservice. In the event that replicated microservice instances are found to provide the same function, it is crucial to select the right microservice that provides the best overall experience for the end-user. Parameters including success rate, efficiency, delay time, and response time play a vital role in establishing a microservice's Quality of Service (QoS). These assessments can be performed by means of a live health-check service, or, alternatively, by making a prediction of the current state of affairs with the application of machine learning-based approaches. In this research, we evaluate the performance of several classification algorithms for estimating the quality of microservices using the QWS dataset containing traffic data of 2505 microservices. Our research also analyzed the boosting algorithms, namely Gradient Boost, XGBoost, LightGBM, and CatBoost to improve the overall performance. We utilized parameter optimization techniques, namely Grid Search, Random Search, Bayes Search, Halvin Grid Search, and Halvin Random Search to fine-tune the hyperparameters of our classifier models. Experimental results demonstrated that the CatBoost algorithm achieved the highest level of accuracy (90.42%) in predicting microservice quality.Item Open Access Mikroservis Ekosisteminde Servis Keşfi Mekanizması(İstanbul Kültür Üniversitesi, 2023) TOKMAK, AHMET VEDAT; Akhan AkbulutGünümüzde teknolojinin hızla gelişmesi ile yazılım-yoğun sistemler her zamankinden daha fazla hayatımıza dahil olmakta, bu sistemlerde çoğunlukla tercih edilen monolitik yazılım mimarisinin ihtiyacı karşılamakta yetersiz kaldığı görülmektedir. Servis Odaklı Mimari (SOA), uygulama geliştirme dili, platform bağımsız kullanımı ve yüksek ölçeklenebilirlik avantajları nedeniyle monolitik mimari yerine tercih edilmeye başlanmıştır. SOA'nın en güncel uygulaması olan mikroservis mimarisinin yazılım mimarisi olarak kullanımının yaygınlaşması, mikroservisler için keşif problemini beraberinde getirmiştir. Mikroservislerin etkin kullanımı için ilk olarak erişilmek istenen mikroservise ait IP ve Port bilgilerine takiben mikroservisin ilgili yazılım bileşeninin aktif olup olmadığı bilgisine ihtiyaç vardır. Aynı servisi sunan çok sayıda mikroservis tespit edilmesi durumunda, mikroservisler arasından hizmet kalitesi en yüksek olanın seçilmesi gerekir. Bir mikroservisin kalitesi; başarı, verim, gecikme zamanı, tepki süresi gibi belirli parametrelerle belirlenir. Bu çalışma kapsamında mikroservis kalitesinin tahmin edilebilmesi için sistematik literatür taramasıyla yapılan çalışmalarda öne çıkan SVM, Karar Ağacı, Rassal Orman, KNN ve Naive Bayes sınıflandırma algoritmalarının etkili olduğu gözlemlenmiştir. Yaptığımız araştırma çalışmasının bir diğer bulgusu olarak; ilgili algoritmalarla birlikte önerilen Gradyan Artırma, XGBoost, LightGBM ve CatBoost yükseltme algoritmalarını kullanan ampirik çalışmalar yapılmıştır. Geliştirilen modellerin en uygun hiperparametre değerlerinin tespit edilmesi için Grid Search, Random Search, Bayes Search, Halvin Grid Search ve Halvin Random Search olarak beş farklı yöntem kullanılmıştır. Deneylerde gerçek dünyadan elde edilen 2507 mikroservise ait trafik verisini barındıran QWS veriseti kullanılmıştır. Mikroservis kalitesinin tahmin edilmesinde en iyi sonuç %90.42'lik genel doğruluk oranı ile CatBoost algoritmasıyla elde edilmiştir.Publication Open Access Web Service Discovery: Rationale, Challenges, and Solution Directions(Elsevier, 2023) TOKMAK, AHMET VEDAT; AKBULUT, AKHAN; Çatal, ÇağatayService Oriented Architecture (SOA) is a methodology that promotes cooperation between services with diverse, but connected functions. Web Service technology paved the way for microservice architecture as it is a feature of modern web applications that resulted from the rise of SOA. With the proliferation of self-contained services, the ease of finding has emerged as a critical concern. Due to the increasing number of services that perform identical tasks, it has become difficult for users to select the most feasible service. Providing the most relevant service for the customer quickly is a crucial infrastructure task, and undiscovered services increase ecosystem expenses. Syntactic, semantic-conscious, and ontology-based studies have been presented as ways to improve the effectiveness and quality of service discovery techniques. While there are many approaches that have been proposed and validated for service discovery in literature, these studies are fragmented and there is a lack of overview of the techniques of web service discovery. As such, we conduct a Systematic Literature Review (SLR) study to review the existing body of knowledge surrounding service discovery and discuss the state-of-the-art. We present an overview of the techniques and empirical evidence by identifying, analyzing, and classifying the papers. Among the 764 papers we retrieved, 54 papers were included. We provide a comprehensive analysis of methodologies and tools for discovering web services.